• Title/Summary/Keyword: Test Temperature

Search Result 10,040, Processing Time 0.04 seconds

Influence of Thermal Cycle Test of a 22.9 kV High Temperature Superconducting Cable System (22.9 kV 초전도케이블 시스템의 Thermal Cycle Test 영향)

  • Sohn, S.H.;Lim, J.H.;Yang, H.S.;Ryoo, H.S.;Choi, H.O.;Sung, T.H.;Kim, D.L.;Hwang, S.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.242-242
    • /
    • 2007
  • To verify the applicability of High Temperature Superconducting (HTS) cable system into the real grid, the HTS cable system with the specification of 22.9 kV, 1250 A, 100 m long was installed in the second quarter of 2006, and the long term field test has been in progress at the KEPCO's Gochang power testing yard. Apart from the conventional power cable, HTS cable system requires sufficient thermo-mechanical strength to endure a large temperature difference. To date, the KEPCO HTS cable system was cooled down and warmed to the room temperature several times to investigate the influence of thermal cycles experimentally. Dielectric properties, critical current dependance and heat losses were evaluated at each step of thermal cycle. The test results showed that thermal cycle did not induce the degradation of dielectric properties, and the critical current decreased to 5 % of the initial value.

  • PDF

Analysis on the increasing loss in Temperature rise test of induction motor by equivalent load method (등가부하법에 따른 유도기 온도상승 시험시 발생 증분 손실 해석)

  • Park, J.T.;Lee, J.I.;Kim, K.O.;Kwon, J.L.;Kwon, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1045-1046
    • /
    • 2007
  • As equivalent load method of induction motor, even without connecting load, for temperature rise test has been acknowledged economic and corrective method, the method has been widely used instead of the real load method, and also international standards IEC 61986 is published in 2002. ABB, an well-known and famous electric machinery maker in the world, has been already applying the equivalent load method since 2002. HHI has been using real load method and equivalent load method for temperature rise of induction motor, it is already known that the equivalent test results is higher as $1-5^{\circ}K$ than that of real load test. But, quantity analysis for the reason of the temperature rise is not satisfied sufficiently. So, in this paper, quality analysis and also quantity analysis was conducted.

  • PDF

A Study on High Temperature properties of Kaolin-Phosphate-Water Systems (카올린-인산염-물계의 고온특성에 관한 연구)

  • 박금길;장영재
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.229-236
    • /
    • 1981
  • This study deals with the high temperature (600-135$0^{\circ}C$) properties of Kaolin-Phosphate-Water systems. Phosphoric acid, mono aluminum phosphate, mono ammonium phosphate, the mixture of phosphoric acid and mono aluminum phosphate, and the mixture of phosphoric acid and mono ammonium phosphate were used to characterize the M.O.R of the systems with to quantity of phosphates and firing temperature. Firing shrinkage, creeptest, DTA, TGA, and X-ray diffraction patterns were also measured in order to investigate the factors of strengthening. The resules of the experiments are as follows: 1. Linear shrinkage of kaolin-phosphate systems become larger as the firing temperature rise, and generally in the firing temperature of $600^{\circ}C$ and 100$0^{\circ}C$ the test pieces with phosphate binder show larger then Kaolin-Water system in linear shrinkage and reversed trends were found at 120$0^{\circ}C$ and 135$0^{\circ}C$. 2. Cold M.O.R. of kaolin-phosphate systems show higher trends in strength as the firing temperature rise. Comparing M.O.R. of test pieces after firing at 135$0^{\circ}C$, the mixture of phosphoric acid-mono aluminum phosphate, and phosphoric acid mono ammonium phosphate systems show higher strength than kaolin-mono aluminum phosphate system which widely used, and it shows highest strength when the mole ratio of phosphoric acid and mono ammonium phosphate is 1:1 among the test pieces of kaolin-phosphate systems. 3. The refractoriness of kaolin-phosphate systems are more deteriorated than Kaolin-Water system, and generally, the more addition of phosphate, the lower the refractoriness, however in the range of 4-8% phosphate addition, the difference of the fusion temperature is about 7$0^{\circ}C$. 4. The test pieces of T1 and T2 in creep test were same or even higher than kaolin-water system when 6% of phosphoric acid-mono ammonium phosphate was added to kaolin. 5. In case where the phosphoric acid-mono ammonium phosphate was added to kaolin in mole ratio 1:1 the cold M.O.R., after firing at 135$0^{\circ}C$, refractoriness and $T_2$ in creep test show better results than kaolin-mono-aluminum phosphate system which is widely used. 6. Phosphoric acid and mono ammonium phosphate react with kaolin in temperature over 100$0^{\circ}C$, and it forms aluminum phosphate.

  • PDF

Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test (절삭실험을 이용한 저합금강의 유동응력 결정 및 검증)

  • Ahn, Kwang-Woo;Kim, Dong-Hoo;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

Degradation Damage Evaluation of High Temperature Structural Components by Electrochemical Anodic Polarization Test (전기화학적 양극분극시험에 의한 고온 설비부재의 열화손상 평가)

  • Yu, Ho-Seon;Song, Mun-Sang;Song, Gi-Uk;Ryu, Dae-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1398-1407
    • /
    • 2000
  • The structural steels of power plant show the decrease of mechanical properties due to degradation such as temper embrittlement, creep damage and softening during long-term operation at high temper ature. The typical causes of material degradation damage are the creation and coarsening of carbides(M23C6, M6C) and the segregation of impurities(P, Sb and Sn) to grain boundary. It is also well known that material degradation induces the cleavage fracture and increases the ductile-brittle transition temperature of steels. So, it is very important to evaluate degradation damage to secure the reliable and efficient service condition and to prevent brittle failure in service. However, it would not be appropriate to sample a large test piece from in-service components. Therefore, it is necessary to develop a couple of new approaches to the non-destructive estimation technique which may be applicable to assessing the material degradation of the components with not to influence their essential strength. The purpose of this study is to propose and establish a new electrochemical technique for non-destructive evaluation of material degradation damage for Cr-Mo steels which is widely used in the high temperature structural components. And the electrochemical anodic polarization test results are compared with those of semi-nondestructive SP test.

Experimental Study on the Load Carrying Performance and Driving Torque of Gas Foil Thrust Bearings (가스 포일 스러스트 베어링의 하중지지 성능 및 구동 토크에 관한 실험적 연구)

  • Kim, Tae Ho;Lee, Tae Won;Park, Moon Sung;Park, Jungmin;Kim, Jinsung;Jeong, Jinhee
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.141-147
    • /
    • 2015
  • Gas foil thrust bearings (GFTBs) have attractive advantages over rolling element bearings and oil film thrust bearings, such as oil-free operation, high speed stability, and high-temperature operation. However, GFTBs have lower load carrying capacity than the other two types of bearings owing to the inherent low gas viscosity. The load carrying capacity of GFTBs depends mainly on the compliance of the foil structure and the formed hydrodynamic wedge, where the gas pressure field is generated between the top foil and the thrust runner. The load carrying capacity of the GFTBs is very important for the suitable design of oil-free turbomachinery with high performance. The aim of the present study is to identify the characteristics of the load carrying performance of GFTBs. A new test rig for the experimental measurements is designed to provide static loads up to 800 N using a pneumatic cylinder. The maximum operating speed of the driving motor is 30,000 rpm. A series of experimental tests—lift-off test, static load performance test, and maximum load capacity test—estimate the performance of a six-pad GFTB, in terms of the static load, driving torque, and temperature. The maximum load capacity is determined by increasing the static load until the driving torque rises suddenly with a sharp peak. The test results show that the torque and temperature increase linearly with the static load. The estimated maximum load capacity per unit area is approximately 80.5 kPa at a rotor speed of 25,000 rpm. The test results can be used as a design guideline for GFTBs for realizing oil-free turbomachinery.

Design and Performance Test of Cooling-Air Test Equipment for the Environmental Control System in Aircraft (항공기 ECS 냉각공기 시험장비 설계 및 성능 시험)

  • So, Jae-uk;Kim, Jin-sung;Kim, Jae-woo;Kim, Jin-bok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.147-154
    • /
    • 2021
  • In this paper, the configuration and design of the test equipment are presented to examine the impact of rapid temperature change in cooling-air that may occur during the operation of the fixed wing aircraft Environmental Control System (ECS) on avionic electronic equipment. At the start of the ECS, the temperature of the air supplied by the aircraft ECS may be increased to 5.0℃ per second. In order to ensure operating of the avionic electronic equipment that is mounted on the aircraft and receives cooling-air from the ECS, testing equipment that can implement the cooling-air characteristic test environment is required. During design of test equipment was verified cooling-air rapid rate of temperature change by performing a thermal/flow analysis, performance of the test equipment implemented was verified by applying an avionic electronic equipment.

Development and Performance Test on the 1-Inch Glove Valve for the LNG Piping System (LNG 배관 시스템용 1인치 글로브 밸브 개발 및 성능실험)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • This study describes the development of a 1-inch cryogenic glove valve for an LNG pumping system and localization development achieved through the performance test. The cryogenic valve used in the LNG pumping system plays an important role in maintaining a flow rate by LNG transportation. This trial manufactured goods, which was achieved through reverse engineering and developing the assembly process. The result of the leak test satisfied the internal pressure condition using the 78-bar normal temperature test and maintained the anti-leakage condition. Also, the result of the cryogenic leak test (BS 6364: low temperature test procedure) maintained anti-leakage at -196 and 52 bar, which satisfied the test standards.

Study on the Color Changing of Pine by Accelerated Weathering Test (소나무재의 촉진열화실험에 따른 재색변화에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.2
    • /
    • pp.152-162
    • /
    • 2012
  • The color changing of the wood surface was tested by accelerated weathering test that can simulate the outdoor condition with short period. In early parts of accelerated weathering test, weight and volume of specimen all were increased due to the moisture evaporation by its high temperature and illumination level, but weight and volume of specimen all were decreased from middle parts to last. However, significancy showed between control group and accelerated weathering test group in terms of weight and volume. According to the results of color-difference meter, in the early parts of the accelerated weathering test lightness, redness and yellowness all showed a clear increasing or decreasing trend. However, after three weeks all values were almost never change. Until the early parts of the test, lightness was decreased and there was not a considerable change after three weeks in the test. Redness showed a some change in early parts of the test, but this also showed not great change after middle parts of the test as like lightness. Yellowness also showed same pattern. These results could be verified through the visual inspection. As like weight and volume, significancy showed between control group and accelerated weathering test group in terms of color-difference test. In all accelerated weathering test group, color-differences of after test was lower than that of before test. To correctly analyze this cause, more additional research will be need on each of temperature, humidity and illumination factors.

  • PDF

A study of Experimental on Construction of Concrete Filled in Steel Tube Column under a Low Temperature (저온하에서의 CFT 시공을 위한 실험적 연구)

  • 강용학;이민경;정근호;백민수;김진호;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.489-494
    • /
    • 2002
  • The basic Physical properties, Slump, Slump Flow, Air content, Bleeding, and Settlement of concrete was investigated to test Characteristic of Setting and to evaluate the relation between Model Specimen and Heat of Hydration for construction under Low Temperature (CFT). The objective of this study is to take the partial core after the cementation of Model Specimen, test the compression intensity and analyze the relation to Test Piece.

  • PDF