• 제목/요약/키워드: Test Socket

Search Result 118, Processing Time 0.028 seconds

CPVC Valve Tightening Torque Impact Sockets on the Leaks (CPVC 밸브소켓 체결토크가 누수발생에 미치는 영향)

  • Lim, Chun-Ki;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, the stress applied to screw section, strain, displacement, von Mises stress, and the compression stress applied to the rubber packing for watertightness are estimated with computer simulation when the tightening torque of valve socket is in the range of $10{\sim}130N{\cdot}m$ in order to analyze the influence of valve socket screw section in accordance with the excessive tightening which is supposed to be the cause of water leakage from the synthetic resin piping for fire fighting application of sprinkler equipment, and for the sake of verifying this, adequate value of tightening torque and the value of the compression stress of rubber packing are investigated by examining the number of connected thread for each tightening torque, the deformation state of valve socket and rubber packing and conducting the water hammering test. The result of this test is expected to be utilized as the data required for revising the standard or technical criteria to prevent the water leakage of the synthetic resin piping for fire fighting application.

Process Development of Forming of One Body Fine Pitched S-Type Cantilever Probe in Recessed Trench for MEMS Probe Card (멤스 프로브 카드를 위한 깊은 트렌치 안에서 S 모양의 일체형 미세피치 외팔보 프로브 형성공정 개발)

  • Kim, Bong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • We have developed the process of forming one body S-type cantilever probe in the recessed trench for fine-pitched MEMS probe card. The probe (cantilever beam and pyramid tip) was formed using Deep RIE etching and wet etching. The pyramid tip was formed by the wet etching using KOH and TMAH. The process of forming the curved probe was also developed by the wet etching. Therefore, the fabricated probe is applicable for the probe card for DRAM, Flash memory and RF devices tests and probe tip for IC test socket.

Evaluation of Shear Performance for CSB (Confined Socket Bolt) Shear Connector (CSB (Confined Socket Bolt) 전단연결재의 전단 성능 평가 )

  • Seung-Hyeon Hwang;Ju-Hyun Mun;Jong-Kook Hong;Jong-Cheol Jeon;Jae-Il Sim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.8-16
    • /
    • 2023
  • This study evaluated a shear capacity of confined socket-bolt (CSB) shear connector developed for utilizing cast in placed pile (CIP) as a permanent underground wall. The push-out tests were performed in the specimens with different CIP types, CSB shear connector types, L/d, and concrete compressive strengths of concrete pile, and with or without waterproofing at interfaces between CIP and underground wall. Test results showed that the specimens with a H-shaped pile were fractured in the CSB shear connector, while the fracture concentrated in the concrete part of the specimens with a reinforced concrete pile was alleviated as the compressive strength of the concrete pile increased, resulting in the severe fracture of CSB shear connector. The maximum shear capacities of the specimens with high strength bolts and reinforcing bars used as CSB shear connector were approximately 1.22 and 1.20 times higher than those of the specimens with a H-shaped pile, respectively, and 1.10 and 1.16 times higher than those of the specimens with a reinforced concrete pile, respectively. Meanwhile, the maximum shear capacity was not significantly affected by the embedding length of the CSB shear connector and overlapping length of reinforcing bar. The predicted shear capacities calculated from the KDS standards were lower than the measured values of all specimens tested in this study.

The Behavior of Large Diameter Rock Socketed Piles (암반 정착 대구경 피어기초의 거동특성에 관한 연구)

  • Kim, Tae-Hyun;Kim, Chan-Kook;Hwang, Eui-Seok;Lee, Bong-Real;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1245-1250
    • /
    • 2006
  • The rapid growth of the economy recently gas led to increasing social needs for large scaled structures, such as high-rise buildings and long span bridges. In building these large-scaled structures the trend has been to construct foundations beating on or in rock masses in order to ensure stability and serviceability of the structure under several significant loads. However. when designing the drilled shaft foundation socketed in rock masses in Korea, the bearing capacity for the pier used to be determined by using the empirical expression, which depends on the compressive strength of the rock, or presumable bearing capacity recommended on foreign references or manuals. In this study, numerical analyses are used to trace rock-socketed pile behavior and are made alike with pile load test result in field. The result of this numerical analyses study have shown that following factors have a significant influence on the load capacity and settlement of the pier. Significant influence first factor of the geometry of the socket as defined by the length to diameter ratio. Second factor of the modulus of the rock both around the socket and below the base. third factor of the condition of the end of the pier with respect to the removal of drill cuttings and other loose material from the bottom of the socket.

  • PDF

Prediction of the Shaft Resistance of Pile Sockets (암에 근입된 말뚝의 주면저항력 예측)

  • Seidel, J.P.;Cho, Chun-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.281-293
    • /
    • 2002
  • Empiricism has characterized the traditional methods of pile design; in essence, pile design recommendations are based on the accumulated knowledge of pile behaviour based on the construction and subsequent load testing of piles in soil and rock. In this paper, the traditional approaches to design of piles in rock will be briefly reviewed. It will be shown that the unrelated empirical relationships developed fur rock lead to considerable uncertainty in the design of piles. A new method for predicting the shaft resistance of piles socketed into rock, and based on fundamental principles is outlined. It is shown that the shaft resistance predictions of this method agree well with the field test data for rock and hard soil. It is demonstrated by way of a limited parametric study that shaft roughness and socket diameter are critical factors in the performance of piles constructed in these materials. The application of the method to piles socketed into the granites and gneisses of Korea is discussed by way of a case study and by reference to recent direct shear tests on these rocks.

A Study on DDS (Data Distribution Service) Application for Real-time Monitoring and Control in Operation Console of the Railway Safety Control Platform (철도 안전관제 통합콘솔에서의 실시간 감시 및 통제를 위한 DDS 적용방안 연구)

  • So, Jaegeol;Shin, Kwang-Ho;Ahn, Jin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • Recently, a safety control platform to monitor the safety of train operation in real time and prevent accidents and risks through control is under study. In the initial design, DDS communication method supporting distributed network is adopted for real-time processing of large amount of data according to the integration of existing distributed safety data. However, communication between server and console inside the safety control platform is applied to existing TCP socket communication. In the case of TCP socket communication, it is possible to process data for a small system of a safety control test bed by one-to-one communication. However, if the data is expanded all over the country in the future, it becomes difficult to cope with a case where communication traffic occurs due to vast amount of data. In this paper, we propose DDS communication method to support distributed network between server and console of security control platform, and demonstrate TCP socket and DDS method, and compare throughput and speed. As a result, we have found that the scalability and flexibility are improved in case of applying DDS communication to future systems.

Formation Mechanisms of Sn Oxide Films on Probe Pins Contacted with Pb-Free Solder Bumps (무연솔더 범프 접촉 탐침 핀의 Sn 산화막 형성 기제)

  • Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.545-551
    • /
    • 2012
  • In semiconductor manufacturing, the circuit integrity of packaged BGA devices is tested by measuring electrical resistance using test sockets. Test sockets have been reported to often fail earlier than the expected life-time due to high contact resistance. This has been attributed to the formation of Sn oxide films on the Au coating layer of the probe pins loaded on the socket. Similar to contact failure, and known as "fretting", this process widely occurs between two conductive surfaces due to the continual rupture and accumulation of oxide films. However, the failure mechanism at the probe pin differs from fretting. In this study, the microstructural processes and formation mechanisms of Sn oxide films developed on the probe pin surface were investigated. Failure analysis was conducted mainly by FIB-FESEM observations, along with EDX, AES, and XRD analyses. Soft and fresh Sn was found to be transferred repeatedly from the solder bump to the Au surface of the probe pins; it was then instantly oxidized to SnO. The $SnO_2$ phase is a more stable natural oxide, but SnO has been proved to grow on Sn thin film at low temperature (< $150^{\circ}C$). Further oxidation to $SnO_2$ is thought to be limited to 30%. The SnO film grew layer by layer up to 571 nm after testing of 50,500 cycles (1 nm/100 cycle). This resulted in the increase of contact resistance and thus of signal delay between the probe pin and the solder bump.

Failure analysis of steel column-RC base connections under lateral cyclic loading

  • Demir, Serhat;Husem, Metin;Pul, Selim
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.459-469
    • /
    • 2014
  • One of the most important structural components of steel structures is the column-base connections which are obliged to transfer horizontal and vertical loads safely to the reinforced concrete (RC) or concrete base. The column-base connections of steel or composite steel structures can be organized both moment resistant and non-moment resistant leading to different connection styles. Some of these connection styles are ordinary bolded systems, socket systems and embedded systems. The structures are frequently exposed to cycling lateral loading effects causing fatal damages on connections like columns-to-beams or columns-to-base. In this paper, connection of steel column with RC base was investigated analytically and experimentally. In the experiments, bolded connections, socket and embedded connection systems are taken into consideration by applying cyclic lateral loads. Performance curves for each connection were obtained according to experimental and analytical studies conducted and inelastic behavior of connections was evaluated accordingly. The cyclic lateral performance of the connection style of embedding the steel column into the reinforced concrete base and strengthening of steel column in upper level of base connection was found to be higher and effective than other connection systems. Also, all relevant test results were discussed.

Performance of Rock-socketed Drilled Shafts in Deep Soft Clay Deposits

  • Kim, Myung-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.409-429
    • /
    • 2006
  • In designing rock-socketed drilled shaft, bearing capacity evaluation is very important because the maximum values of base and side resistance are not generally mobilized at the same value of displacement, FHWA and AASHTO code suggest different ultimate bearing capacity formular according to rock type and shaft settlement. In domestic code suggest base resistance and side resistance can be added on condition that after confirming the result of field load test with axial load transfer test. This paper shows that static load test and hi-directional load test result analysis of deep rock-socketed drilled shaft in three different sites. Load-settlement curve, t-z, and q-w curve in rock-socketed part were calculated and compared. t-z curve in weathered and soft rock showed no deflection softening behavior in pretty large strain (about 2-3% of diameter). Ultimate resistance could be the summation of side resistance and base resistance in rock-socketed drilled shaft in domestic sites.

  • PDF

Design criteria of rock socked pile in South Korea (국내 암반에 근입된 현장타설말뚝의 설계기준 수립)

  • 이풍희;김종흔;전경수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.06a
    • /
    • pp.31-42
    • /
    • 2002
  • The Design criteria are different from one another due to the different engineering properties of rock in the every nation. Most of the test results of the rock-socketed piers were loaded two times of the design load capacities because they would be used in the foundation of the bridge or the building. So we have much difficulties in study of the load capacities of the rock-socketed piers by the test result in Korea. When we design the rock-socket piers, every designer uses the different formula, and makes different results. Recently the demand of the large bridges and the huge buildings has been increased. The adequate design criterion of the rock-socketed pier is urgently needed to design them reasonable. In this paper we analyzed the various design criteria and proposed the adequate design criterion which is based on the test results of the rock-socked piers in Korea.

  • PDF