• Title/Summary/Keyword: Test Socket

Search Result 119, Processing Time 0.032 seconds

Analysis of Thermal Characteristics and Insulation Resistance Based on the Installation Year and Accelerated Test by Electrical Socket Outlets

  • Kim, Kyung Chun;Kim, Doo Hyun;Kim, Sung Chul;Kim, Jae Ho
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.405-417
    • /
    • 2020
  • Background: Electrical socket outlets are used continuously until a failure occurs because they have no indication of manufacturing date or exchange specifications. For this reason, 659 electrical fires related to electrical socket outlets broke out in the Republic of Korea at 2018 only, an increase year on year. To reduce electrical fires from electrical socket outlets, it is necessary to perform an accelerated test and analyze the thermal, insulation resistance, and material properties of electrical socket outlets by installation years. Methods: Thermal characteristics were investigated by measured the temperature increase of electrical socket outlets classified according to year with variation of the current level. Insulation resistance characteristics was measured according to temperature for an electrical socket outlets by their years of use. Finally, to investigate the thermal and insulation resistance characteristics in relation to outlet aging, this study analyzed electrical socket outlets' conductor surface and content, insulator weight, and thermal deformation temperature. Results: Analysis showed, regarding the thermal characteristics, that electrical socket outlet temperature rose when the current value increased. Moreover, the longer the time that had elapsed since an accelerated test and installation, the higher the electrical socket outlet temperature was. With respect to the insulation resistance properties, the accelerated test (30 years) showed that insulation resistance decreased from 110 ℃. In relation to the installation year (30 years), insulation resistance decreased from 70 ℃, which is as much as 40 ℃ lower than the result found by the accelerated test. Regarding the material properties, the longer the elapsed time since installation, the rougher the surface of conductor contact point was, and cracks increased. Conclusion: The 30-year-old electrical socket outlet exceeded the allowable temperature which is 65 ℃ of the electrical contacts at 10 A, and the insulation resistance began to decrease at 70 ℃. It is necessary to manage electrical socket outlets that have been installed for a long time.

Fabrication of Test Socket from BeCu Metal Sheet (BeCu 금속박판을 이용한 테스트 소켓 제작)

  • Kim, Bong-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.34-38
    • /
    • 2012
  • We have developed a cost effective test socket for ball grid array(BGA) integrated circuit(IC) packages using BeCu metal sheet as a test probe. The BeCu furnishes the best combination of electrical conductivity and corrosion resistance. The probe of the test socket was designed with a BeCu cantilever. The cantilever was designed with a length of 450 ${\mu}m$, a width of 200 ${\mu}m$, a thickness of 10 ${\mu}m$, and a pitch of 650 ${\mu}m$ for $11{\times}11$ BGA. The fabrication of the test socket used techniques such as through-silicon-via filling, bonding silicon wafer and BeCu metal sheet with dry film resist(DFR). The test socket is applicable for BGA IC chip.

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou;Heisha, Wenliuhan;Yanhui, Liu;Zhipeng, Zhai;Chongbin, Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.407-417
    • /
    • 2023
  • Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.

Test for the influence of socket connection structure on the seismic performance of RC prefabricated bridge piers

  • Yan Han;Shicong Ding;Yuxiang Qin;Shilong Zhang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.89-97
    • /
    • 2023
  • In order to obtain the impact of socket connection interface forms and socket gap sizes on the seismic performance of reinforced concrete (RC) socket prefabricated bridge piers, quasi-static tests for three socket prefabricated piers with different column-foundation connection interface forms and reserved socket gap sizes, as well as to the corresponding cast-in-situ reinforced concrete piers, were carried out. The influence of socket connection structure on various seismic performance indexes of socket prefabricated piers was studied by comparing and analyzing the hysteresis curve and skeleton curve obtained through the experiment. Results showed that the ultimate failure mode of the socket prefabricated pier with circumferential corrugated treatment at the connection interface was the closest to that of the monolithic pier, the maximum bearing capacity was slightly less than that of the cast-in-situ pier but larger than that of the socket pier with roughened connection interface, and the displacement ductility and accumulated energy consumption capacity were smaller than those of socket piers with roughened connection interface. The connection interface treatment form had less influence on the residual deformation of socket prefabricated bridge piers. With the increase in the reserved socket gap size between the precast pier column and the precast foundation, the bearing capacity of the prefabricated socket bridge pier component, as well as the ductility and residual displacement of the component, would be reduced and had unfavorable effect on the energy dissipation property of the bridge pier component.

Improvement of Memory Module Test Signal Integrity Using High Frequency Socket (High Frequency Socket 개발을 통한 Memory Module Test Signal Integrity 향상)

  • Kim, Min-Su;Kim, Su-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.491-492
    • /
    • 2008
  • According to high-speed large scale integration trend of Memory module product, many type of noises, such a reflection, cross-talk simultaneous switching noise, occur on the Package PCB and they make the deterioration of memory module's performance and reliability. As module products have more high efficiency, Hardware of test board and socket has to be considered In test of the high-speed Memory Module. we mainly focused on improvement of Signal integrity Using the High Frequency Test socket that we invented

  • PDF

A Study on the Test Device for Improving Test Speed and Repeat Precision of Semiconductor Test Socket (반도체 테스트 소켓의 검사속도 및 반복 정밀도 개선형 검사장치에 관한 연구)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.327-332
    • /
    • 2021
  • At the package level, semiconductor reliability inspections involves mounting a semiconductor chip package on a test socket. The form of the test socket is basically determined by the form of the chip package. It also acts as a medium to connect with test equipment through mechanical contact of the leads and socket leads in the chip package, and it minimizes signal loss in a signal transmission process so that an inspection signal can be delivered well to the semiconductor. In this study, a technique was applied to examine the interdependence of adjacent electrical transfer routes and the structure of adjacent electrical transfer paths. The goal was to enable short-circuit testing of fewer than 100 silicon test sockets through a single interface for life tests and precision measurements. The test results of the developed device show a test precision of 99% or more and a simultaneous test speed characteristic of 0.66 sec or less.

An experimental study on different socket base connections under cyclic loading

  • Pul, Selim;Husem, Metin;Arslan, Mehmet Emin;Hamzacebi, Sertac
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.377-387
    • /
    • 2014
  • This paper presents an experimental study on socket base connections of precast reinforced concrete columns. The main purpose of this study is to determine socket base connection which has the closest behavior to monolithic casted column-base joints. For this purpose, six specimens having different column-socket base connection details were tested under cyclic loading. For each test, strength, stiffness, ductility and drift ratios of the specimens were determined. Test results indicated that a suggested connection type is 10%-30% stronger than the other type of connections under lateral loading. The welded connection (PC-5) had better lateral load carrying capacity and ductility. On the other hand, performance of standard connection (PC-1) which is commonly used in construction was weaker than other connections. Thus, decision of connection type should be referred not only performance but also applicability.

Experimental evaluation of fatigue strength for small diameter socket welded joints under vibration loading condition

  • Oh, Chang-Young;Lee, Jun-Ho;Kim, Dong-Woo;Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3837-3851
    • /
    • 2021
  • To investigate how the fabrication and repair of socket welded joints could be used to enhance fatigue resistance under vibration condition, experimental test data of installation conditions that potentially influence fatigue strength were analyzed with the S-N curve. It was found that the decreasing fatigue strength of stainless steel socket welded joints was attributed to the effect of high heat input of welding process. The effect of welding method, slip-on gap and radial-gap conditions on fatigue strength was insignificant. The test data of repair technique application, 2 × 1 leg length and of socket weld overlay, clearly showed higher fatigue strength but there was a limitation for higher stress region because of the weld toe crack.

Improvement of Signal Transfer Characteristics of Fine Pitch Probe Pin Using Coaxial Test Socket with New Structure (새로운 구조의 동축 테스트 소켓을 이용한 미세 피치 프로브 핀의 신호 전달 특성 개선)

  • Jeong-Jun Seo;Moonjung Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.97-103
    • /
    • 2024
  • In this paper, the difference between the S-parameter and the characteristic impedance according to the structural change of the fine pitch coaxial socket was analyzed. A pitch of the probe pin was applied to 0.20mm, and ground pins of different conditions were placed on each of the five signal pins. Insertion loss and reflection loss were analyzed for the coaxial socket of normal structure and the two sockets of the proposed structure. In addition, the difference in characteristic impedance was analyzed using time domain reflectometry. Through the analysis, it was confirmed that the characteristic impedance was improved applying the new structures of the socket at the same pitch

  • PDF