• Title/Summary/Keyword: Test Methodology

Search Result 2,306, Processing Time 0.029 seconds

Nonlinear effects on motions and loads using an iterative time-frequency solver

  • Bruzzone, Dario;Gironi, C.;Grasso, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 2011
  • A weakly nonlinear seakeeping methodology for predicting motions and loads is presented in this paper. This methodology assumes linear radiation and diffraction forces, calculated in the frequency domain, and fully nonlinear Froude-Krylov and hydrostatic forces, evaluated in the time domain. The particular approach employed here allows to overcome numerical problems connected to the determination of the impulse response functions. The procedure is divided into three consecutive steps: evaluation of dynamic sinkage and trim in calm water that can significantly influence the final results, a linear seakeeping analysis in the frequency domain and a weakly nonlinear simulation. The first two steps are performed employing a three-dimensional Rankine panel method. Nonlinear Froude-Krylov and hydrostatic forces are computed in the time domain by pressure integration on the actual wetted surface at each time step. Although nonlinear forces are evaluated into the time domain, the equations of motion are solved in the frequency domain iteratively passing from the frequency to the time domain until convergence. The containership S175 is employed as a test case for evaluating the capability of this methodology to correctly predict the nonlinear behavior related to wave induced motions and loads in head seas; numerical results are compared with experimental data provided in literature.

Optimization of Garlic Jam Making by Response Surface Methodology (반응표면분석에 의한 마늘잼 제조조건의 최적화)

  • Sim, Gi-Hyeon;Ju, Na-Mi;Han, Yeong-Sil
    • Journal of the Korean Dietetic Association
    • /
    • v.12 no.1
    • /
    • pp.32-43
    • /
    • 2006
  • The purpose of this study is to find out the optimal mixing ratios of three different amounts of pectin, sugar and citric acid for preparation of garlic jam through response surface methodology(RSM) based on the sweetness, pH, color, sensory and texture test. As the sucrose content increased, the sweetness, cohesiveness, color, flavor, gloss and overall palatability of garlic jam tended to be high and the lightness tended to be low. As the pectin content increased, the adhesiveness of garlic jam tended to increase. As the citric acid content increased, the overall palatability of garlic jam tended to be high and the pH tended to be low. The Pectin levels were included 1.8-2.1g, sucrose levels were included 325-342g and citric acid levels were 5.8-6.1g. The optimal mixing ratios of a pectin, sugar and citric acid for manufacturing the best quality of garlic jam were 2.0g, 334g and 6.0g, respectively.

  • PDF

Optimization of Spirulina Added Korean Rice Cake(Garaeduk) using Response Surface Methodology (반응 표면 분석에 의한 스피루리나 첨가 떡볶이떡 제조의 최적화)

  • Kim, Mi-Yeon;Kim, Jong-Mi;Lee, Yun-Jin;Heo, Ok-Soon;Kim, Mee-Ree
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.1
    • /
    • pp.38-44
    • /
    • 2009
  • The principal objective of this study was to determine the optimal mixing ratios of three different quantities of spirulina, salt and water for the preparation of Korean rice cake (Dukbokiduk) via response surface methodology on the basis of color, texture, and sensory test. The spirulina levels were tested in a range of $1{\sim}3%$, the water levels in a range of $15{\sim}25%$, and salt levels were tested a range of $0.5{\sim}1%$ by weight of rice powder. Taste was influenced most profoundly by the amount of added spirulina. Optimal taste was achieved with 1% of spirulina, 0.75% of salt and 20% water. Thus, the optimal mixing ratios of spirulina, salt, and water for Dukbokiduk were 1.0%, 0.57%, and 19.46%, respectively.

  • PDF

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Optimization of Bioelectrochemical Anaerobic Digestion Process Using Response Surface Methodology (반응표면분석법을 활용한 생물전기화학적 혐기성 소화 공정의 최적화)

  • LEE, CHAE-YOUNG;CHOI, JAE-MIN;HAN, SUN-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.409-415
    • /
    • 2015
  • This study was performed to optimize the integrated anaerobic digestion (AD) and microbial electrolysis cells (MECs) for the enhanced hydrogen production. The optimum operational conditions of integrated AD and MECs were obtained using response surface methodology. The optimum substrate concentration and operational pH were 10 g/L and 6.8, respectively. In the confirm test, 1.43 mol $H_2/mol$ hexose was achieved, which was 2.5 times higher than only AD. After 40 to 60 hour at seeding, the volatile fatty acids (VFAs) in reactor of AD were not changed. However the VFAs of reactor of AD-MECs were reduced by 61.3% (acetate: 76.4%, butyrate: 50.0%, lactate: 55.0%).

An Analysis for Optimization of Rubber Granule Layer in Synthetic Surfaced Track using Response Surface Methodology (반응표면법을 이용한 육상트랙용 고무칩층의 최적설계에 관한 연구)

  • Kang, Ki-Weon;Lee, Seung-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.787-794
    • /
    • 2010
  • This paper aims to evaluate the effect of each material ingredient on mechanical and dynamic performance and to determine an optimal mixing condition of a rubber granule layer. To minimize the required number of tests, the test matrix was established by using the design of experiments (DOE). The tensile tests were then performed to identify the mechanical properties. Also, to evaluate the dynamic performance that the IAAF has required for athletics tracks for athletes' safety and balance, a series of impact tests were performed by using the so-called the "artificial athlete" machine. Finally, the response surface methodology was used to decide the optimal mixing conditions needed to achieve a high level of mechanical properties and dynamic performance.

Development of Ultra-precision Positioning Technology Using High-resolution Interpolation Algorithm (고체배 알고리즘을 이용한 초정밀 위치즉정기술 개발)

  • 이종혁;배준영;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.117-124
    • /
    • 2004
  • Recently, nano-methodology is increasingly important as the ruler for measuring nano-technology, and we applied the linear encoder to nano-methodology. The quadrature output in the linear encoder has an effect on increasing the resolution in some techniques. Already, various interpolation techniques based on the quadrature signal have applied to the precision servo system. In this paper, we propose a new interpolation algorithm for ultra-precision positioning in the low speed with simulation by MATLAB SIMULINK. This method modified previous methods and was properly designed for some given control system. To verify, we first fulfilled the encoder signal test to find main parameters fer the signal transformation, then we proved the proposed interpolation algorithm by experiments, which show that the result of the interpolation algorithm corresponds with the measurement of the laser interferometer in 100 nm unit approximately. In addition, we can get more precise measurement by more accurate and noise-free signal. So we need to compensate imperfections in the encoder signal. After that, we will apply this algorithm to nano positioning system.

A methodology for evaluating human operator's fitness for duty in nuclear power plants

  • Choi, Moon Kyoung;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.984-994
    • /
    • 2020
  • It is reported that about 20% of accidents at nuclear power plants in Korea and abroad are caused by human error. One of the main factors contributing to human error is fatigue, so it is necessary to prevent human errors that may occur when the task is performed in an improper state by grasping the status of the operator in advance. In this study, we propose a method of evaluating operator's fitness-for-duty (FFD) using various parameters including eye movement data, subjective fatigue ratings, and operator's performance. Parameters for evaluating FFD were selected through a literature survey. We performed experiments that test subjects who felt various levels of fatigue monitor information of indicators and diagnose a system malfunction. In order to find meaningful characteristics in measured data consisting of various parameters, hierarchical clustering analysis, an unsupervised machine-learning technique, is used. The characteristics of each cluster were analyzed; fitness-for-duty of each cluster was evaluated. The appropriateness of the number of clusters obtained through clustering analysis was evaluated using both the Elbow and Silhouette methods. Finally, it was statistically shown that the suggested methodology for evaluating FFD does not generate additional fatigue in subjects. Relevance to industry: The methodology for evaluating an operator's fitness for duty in advance is proposed, and it can prevent human errors that might be caused by inappropriate condition in nuclear industries.

A Methodology to Determine Composite Material Allowables and Design Values Using Building Block Approach (빌딩블록 접근법을 이용한 복합재 재료 허용치 및 설계치 설정 방법)

  • Kim, Sung Joon;Lee, Seung-gyu;Hwang, In-hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.377-384
    • /
    • 2022
  • In the design of composite aircraft structures, it is very important to set material allowables and design values, which take into account certification. And when determining the material allowable and design value of composite structures, the static strength, damage tolerance requirements, and environmental effects should be considered. The building block approach has been applied to the civil and military aviation industry for a long time and provides the principal certification methodology. This current certification methodology is based on extensive testing including coupon, element, sub-component, and full scale test. In this paper, some examples of composite allowable tests have been presented and the fundamental background and application methods of the building block approach have been presented.

Real-time Knowledge Structure Mapping from Twitter for Damage Information Retrieval during a Disaster

  • Sohn, Jiu;Kim, Yohan;Park, Somin;Kim, Hyoungkwan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.505-509
    • /
    • 2020
  • Twitter is a useful medium to grasp various damage situations that have occurred in society. However, it is a laborious task to spot damage-related topics according to time in the environment where information is constantly produced. This paper proposes a methodology of constructing a knowledge structure by combining the BERT-based classifier and the community detection techniques to discover the topics underlain in the damage information. The methodology consists of two steps. In the first step, the tweets are classified into the classes that are related to human damage, infrastructure damage, and industrial activity damage by a BERT-based transfer learning approach. In the second step, networks of the words that appear in the damage-related tweets are constructed based on the co-occurrence matrix. The derived networks are partitioned by maximizing the modularity to reveal the hidden topics. Five keywords with high values of degree centrality are selected to interpret the topics. The proposed methodology is validated with the Hurricane Harvey test data.

  • PDF