• Title/Summary/Keyword: Tesla coil

Search Result 59, Processing Time 0.028 seconds

Effect of Repetitive Magnetic Stimulation on Proliferation and Viability of Adipose Tissue-Derived Stromal Cells (반복자기자극이 지방유래 중간엽 줄기세포 증식과 활성에 미치는 영향)

  • Kim, Su-Jeong;Park, Hea-Woon;Cho, Yun-Woo;Lee, Joon-Ha;Seo, Jeong-Min;Shin, Hyoun-Jin;Kang, Jae-Hoon;Ahn, Sang-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.3
    • /
    • pp.87-93
    • /
    • 2009
  • Purpose: TThis study examined the effect of repetitive magnetic stimulation (RMS) on the viability and proliferative response of human adipose tissue-derived stromal cells (hATSCs) in vitro. Methods: The hATSCs were cultured primarily from human adipose tissue harvested by liposuction and incubated in a $37^{\circ}C$ plastic chamber. The cells were exposed to a repetitive magnetic field using a customized magnetic stimulator (Biocon-5000, Mcube Technology). The RMS parameters were set as follows: repetition rate=10Hz, 25Hz (stimulus intensity 100%= 0.1 Tesla, at 4cm from the coil), stimulated time= 1, 5, and 20 minutes. Twenty four hours after one application of RMS, the hATSCs were compared with the sham stimulation, which were kept under the same conditions without the application of RMS. The cells were observed by optical microscopy to determine the morphology and assessed by trypan blue staining for cell proliferation. The apoptosis and viability of the hATSCs were also analyzed by fluorescence-activated cell sorting (FACS) analysis of Annexin V and MTT assay. Results: After RMS, the morphology of the hATSCs was not changed and the apoptosis of hATSCs were not increased compared to the sham stimulation. The viability of the cells was similar to the cells given the sham stimulation. Interestingly, the level of hATSC proliferation was significantly higher in all RMS groups. Conclusion: The application of RMS may not cause a change in morphology and viability of hATSCs but can increase the level of cell proliferation in vitro. RMS might be useful as an adjuvant tool in combination with stem cell therapy without adverse effects.

  • PDF

Usefulness estimating of Time of flight(TOF) during Carotid angio inspection including Aortic arch (Aortic arch를 포함한 Carotid angio 검사 시 Time of flight(TOF)의 유용성 평가)

  • Yoo, Yeong-Jun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Purpose : The Carotid Angio inspection including Aortic arch applied to wide area is conducted as the Contrast Enhance MR Angiography(CEA) which is using a contrast medium. However it is a burden not only for someone such as infants, pregnant women and patients suffering from kidney failure but continuous use of contrast medium also can be a burden for patients who has been taken follow up inspection since diagnose lesion already. The purpose of this study is to estimate a usefulness of the Time of Flight (TOF) by comparing with CEA. Materials and methods : 10 patients with an average age of 58 (from 45 to 75) who had MRA inspection in our hospital were studied using 3.0 Tesla Aachieva (Philips, Netherland) MRI system and Sense Neuro-Vascular 16 Channels Coil. The same patient was inspected both TOF and CEA simultaneously. The TOF inspection included from Aortic arch to Willis Circle by connecting 3 TOF stacks and so did CEA inspection. The quantitative analysis was conducted through signal to noise ratio(SNR) and contrast to noise ratio(CNR) with soft tissue by setting up an area of interest on CCA bifurcatoin, ICA, ECA, MCA and VA concerning obtained image. In case of qualitative analysis, 3 radiological technologists and 1 radiologist evaluated 4 items (1: Visibility of the blood vessel, 2: Image distortion measure, 3: Overlapping measure with vein, 4: Peripheral blood vessel description measure) into five points scale (1: Very bad, 2: Bad, 3: Normal 4: Good, 5: Very good). Results : Results for the quantitative analysis was obtained by calculating the average of 5 ROIs in case of SNR and CNR separately. Results of SNR, TOF were generally measured higher than CEA (In case of TOF were 166.1, 205.2, 154.39, 172.23, 161.95, and CEA were 92.05, 95.43, 84.76, 73.69, 88.3). But according to the result of CNR, both TOF and CEA were measured similarly as 67.62, 106.71, 55.9, 73.74, 63.46 for TOF and 67.82, 71.19, 60.52, 49.45, 64.07 for CEA. Throughout every results of each ROI, SNR showed statistically meaningful consequence (0.050.05). In case of qualitative analysis the average of each evaluated item was 4.2points and 4.28points in the item1, 2.93points and 4.55points in the item2, 4.6points and 3.13points in the item3, 2.88points and 4.6points in the item4. According to the results TOF was measured higher in the item3 while in the item2 and item4 CEA was higher and in case of the item1, both CEA and TOF were similar. To sum up statistically meaningful results (p<0.05) were shown in the item2, item3 and item4 but not in the item1 (p>0.05). Conclusions : Both TOF and CEA are complementary because each inspection has pros and cons, but when inspect wide area including Aortic arch normally CEA is conducted. But TOF inspection also can be considered as alternative in terms of patients who has difficulty in the contrast medium such as infants, pregnant women and patients suffering from kidney failure and patients during follow up.

  • PDF

Study of Apparent Diffusion Coefficient Changes According to Spinal Disease in MR Diffusion-weighted Image

  • Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.146-149
    • /
    • 2017
  • In this study, we compared the standardized value of each signal intensity, the apparent diffusion coefficient (ADC) that digitizes the diffusion of water molecules, and the signal to noise ratio (SNR) using b value 0 400, 1400 ($s/mm^2$). From March 2013 to December 2013, patients with suspicion of simple compound fracture and metastatic spine cancer were included in the MR readout. We used a 1.5 Tesla Achieva MRI system and a Syn-Spine Coil. Sequence is a DWI SE-EPI sagittal (diffusion weighted imaging spin echo-echo planar imaging sagittal) image with b-factor ($s/mm^2$) 0, 400, 1400 were used. Data analysis showed ROI (Region of Interest) in diseased area with high SI (signal intensity) in diffusion-weighted image b value 0 ($s/mm^2$) Using the MRIcro program, each SI was calculated with images of b-value 0, 400, and 1400 ($s/mm^2$), ADC map was obtained using Metlab Software with each image of b-value, The ADC is obtained by applying the ROI to the same position. The standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of simple compression fractures were $0.47{\pm}0.04$ and $0.23{\pm}0.03$ and the standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of the metastatic spine were $0.57{\pm}0.07$ and $0.32{\pm}0.08$ And the standardized values of the two diseases were statistically significant (p < 0.05). The ADC ($mm^2/s$) for b value 400 ($s/mm^2$) and 1400 ($s/mm^2$) of the simple compression fracture disease site were $1.70{\pm}0.16$ and $0.93{\pm}0.28$ and $1.24{\pm}0.21$ and $0.80{\pm}0.15$ for the metastatic spine. The ADC ($mm^2/s$) for b value 400($s/mm^2$) was statistically significant (p < 0.05) but the ADC ($mm^2/s$) for b value 1400 (p > 0.05). In conclusion, multi - b value recognition of signal changes in diffusion - weighted imaging is very important for the diagnosis of various spinal diseases.

An Assessment of the Usefulness of Time of Flight in Magnetic Resonance Angiography Covering the Aortic Arch

  • Yoo, Yeong-Jun;Choi, Sung-Hyun;Dong, Kyung-Rae;Ji, Yun-Sang;Choi, Ji-Won;Ryu, Jae-Kwang
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.325-332
    • /
    • 2018
  • Carotid angiography covering the aortic arch includes contrast-enhanced magnetic resonance angiography (CEA), which is applied to a large region and usually employs contrast media. However, the use of contrast media can be dangerous in infants, pregnant women, and patients with chronic renal failure (CRF). Follow-up patients informed of a lesion may also want to avoid constant exposure to contrast media. We aimed to apply time-of-flight (TOF) angiography to a large region and compare its usefulness with that of CEA. Ten patients (mean age, 58 years; range, 45~75 years) who visited our hospital for magnetic resonance angiography (MRA) participated in this study. A 3.0 Tesla Achieva magnetic resonance imaging (MRI) system (Philips, Netherland) and the SENSE NeuroVascular 16-channel coil were employed for both methods. Both methods were applied simultaneously to the same patient. Three TOF stacks were connected to cover the aortic arch through the circle of Willis, and CEA was applied in the same manner. For the quantitative assessment, the acquired images were used to set the regions of interest (ROIs) in the common carotid artery (CCA) bifurcation, internal carotid artery, external carotid artery, middle cerebral artery, and vertebral artery, and to obtain the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) for the soft tissues. Three radiologists and one radiological resident performed the qualitative assessment on a 5-point scale - 1 point, "very bad"; 2 points, "bad"; 3 points, "average"; 4 points, "good"; and 5 points, "very good" - with regard to 4 items: (1) sharpness, (2) distortion, (3) vein contamination, and (4) expression of peripheral vessels. For the quantitative assessment, we estimated the mean SNR and CNR in each of the 5 ROIs. In general, the mean SNR was higher in TOF angiography (166.1, 205.2, 154.39, 172.23, and 161.95) than in CEA(92.05, 95.43, 84.76, 73.69, and 88.3). Both methods had a similar mean CNR: 67.62, 106.71, 55.9, 73.74, and 63.46 for TOF angiography, and 67.82, 71.19, 60.52, 49.45, and 64.07 for CEA. In all ROIs, the mean SNR was statistically significant (p<0.05), whereas the mean CNR was insignificant (p>0.05). The mean values of TOF angiography and CEA for each item in the qualitative assessment were 4.2 and 4.28, respectively for item 1; 2.93 and 4.55, respectively, for item 2; 4.6 and 3.13, respectively, for item 3; and 2.88 and 4.65, respectively, for item 4. Therefore, TOF angiography had a higher mean for item 3, and CEA had a higher mean for items 2 and 4; there was no significant difference between the two methods for item 1. The results for item 1 were statistically insignificant (p>0.05), whereas the results for items 2~4 were statistically significant (p<0.05). Both methods have advantages and disadvantages and they complement each other. However, CEA is usually applied to a large region covering the aortic arch. Time-of-flight angiography may be useful for people such as infants, pregnant women, CRF patients, and followup patients for whom the use of contrast media can be dangerous or unnecessary, depending on the circumstance.

Role of Multiparametric Prostate Magnetic Resonance Imaging before Confirmatory Biopsy in Assessing the Risk of Prostate Cancer Progression during Active Surveillance

  • Joseba Salguero;Enrique Gomez-Gomez;Jose Valero-Rosa;Julia Carrasco-Valiente;Juan Mesa;Cristina Martin;Juan Pablo Campos-Hernandez;Juan Manuel Rubio;Daniel Lopez;Maria Jose Requena
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.559-567
    • /
    • 2021
  • Objective: To evaluate the impact of multiparametric magnetic resonance imaging (mpMRI) before confirmatory prostate biopsy in patients under active surveillance (AS). Materials and Methods: This retrospective study included 170 patients with Gleason grade 6 prostate cancer initially enrolled in an AS program between 2011 and 2019. Prostate mpMRI was performed using a 1.5 tesla (T) magnetic resonance imaging system with a 16-channel phased-array body coil. The protocol included T1-weighted, T2-weighted, diffusion-weighted, and dynamic contrast-enhanced imaging sequences. Uroradiology reports generated by a specialist were based on prostate imaging-reporting and data system (PI-RADS) version 2. Univariate and multivariate analyses were performed based on regression models. Results: The reclassification rate at confirmatory biopsy was higher in patients with suspicious lesions on mpMRI (PI-RADS score ≥ 3) (n = 47) than in patients with non-suspicious mpMRIs (n = 61) and who did not undergo mpMRIs (n = 62) (66%, 26.2%, and 24.2%, respectively; p < 0.001). On multivariate analysis, presence of a suspicious mpMRI finding (PI-RADS score ≥ 3) was associated (adjusted odds ratio: 4.72) with the risk of reclassification at confirmatory biopsy after adjusting for the main variables (age, prostate-specific antigen density, number of positive cores, number of previous biopsies, and clinical stage). Presence of a suspicious mpMRI finding (adjusted hazard ratio: 2.62) was also associated with the risk of progression to active treatment during the follow-up. Conclusion: Inclusion of mpMRI before the confirmatory biopsy is useful to stratify the risk of reclassification during the biopsy as well as to evaluate the risk of progression to active treatment during follow-up.

Alteration Analysis of Normal Human Brain Metabolites with Variation of SENSE and NEX in 3T Multi Voxel Spectroscopy (3T Multi Voxel Spectroscopy에서 SENSE와 NEX 변화에 따른 정상인 뇌 대사물질 변화 분석)

  • Seong, Yeol-Hun;Rhim, Jae-Dong;Lee, Jae-Hyun;Cho, Sung-Bong;Woo, Dong-Chul;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.256-262
    • /
    • 2008
  • To evaluate the metabolic changes in normal adult brains due to alterations SENSE and NEX (number of excitation) by multi voxel MR Spectroscopy at 3.0 Tesla. The study group was composed of normal volunteers (5 men and 8 women) with a mean ($\pm$ standard deviation) age of 41 (${\pm}11.65$). Their ages ranged from 28 to 61 years. MR Spectroscopy was performed with a 3.0T Achieva Release Version 2.0 (Philips Medical System-Netherlands). The 8 channel head coil was employed for MRS acquisition. The 13 volunteers underwent multi voxel spectroscopy (MVS) and single voxel spectroscopy (SVS) on the thalamus area with normally gray matter. Spectral parameters were as follows: 15 mm of thickness; 230 mm of FOV (field of view); 2000 msecs of repetition time (TR); 288 msecs of echo time (TE); $110{\times}110$ mm of VOI (view of interest); $15{\times}15{\times}15$ mm of voxel size. Multi voxel spectral parameters were made using specially in alteration of SENSE factor (1~3) and 1~2 of NEX. All MRS data were processed by the jMRUI 3.0 Version. There was no significant difference in NAA/Cr and Cho/Cr ratio between MVS and SVS likewise the previous results by Ross and coworkers in 1994. In addition, despite the alterations of SENSE factor and NEX in MVS, the metabolite ratios were not changed (F-value : 1.37, D.F : 3, P-value : 0.262). However, line-width of NAA peak in MVS was 3 times bigger than that in SVS. In the present study, we demonstrated that the alterations of SENSE factor and NEX were not critically affective to the result of metabolic ratios in the normal brain tissue.

  • PDF

Optimizations of 3D MRI Techniques in Brain by Evaluating SENSE Factors (삼차원 자기공명영상법의 뇌 구조 영상을 위한 최적화 연구: 센스인자 변화에 따른 신호변화 평가)

  • Park, Myung-Hwan;Lee, Jin-Wan;Lee, Kang-Won;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.161-170
    • /
    • 2009
  • Purpose : A parallel imaging method provides us to improve temporal resolution to obtain three-dimensional (3D) MR images. The objective of this study was to optimize three 3D MRI techniques by adjusting 2D SESNE factors of the parallel imaging method in phantom and human brain. Materials and Methods : With a 3 Tesla MRI system and an 8-channel phase-array sensitivity-encoding (SENSE) coil, three 3D MRI techniques of 3D T1-weighted imaging (3D T1WI), 3D T2-weighted imaging (3D T2WI) and 3D fluid attenuated inversion recovery (3D FLAIR) imaging were optimized with adjusting SESNE factors in a water phantom and three human brains. The 2D SENSE factor was applied on the phase-encoding and the slice-encoding directions. Signal-to-noise ratio(SNR), percent signal reduction rate(%R), and contrast-to-noise ratio(CNR) were calculated by using signal intensities obtained in specific regions-of-interest (ROI). Results : In the phantom study, SENSE factor = 3 was provided in 0.2% reduction of signals against without using SENSE with imaging within 5 minutes for 3D T1WI. SENSE factor = 2 was provided in 0.98% signal reduction against without using SENSE with imaging within 5 minutes for 3D T2WI. SENSE factor = 4 was provided in 0.2% signal reduction against without using SENSE with imaging around 6 minutes for 3D FLAIR. In the human brain study, SNR and CNR were higher with SENSE factors = 3 than 4 for all three imaging techniques. Conclusion : This study was performed to optimize 2D SENSE factors in the three 3D MRI techniques that can be scanned in clinical time limitations with minimizing SNR reductions. Without compromising SNR and CNR, the optimum 2D SENSE factors were 3 and 4, yielding the scan time of about 5 to 6 minutes. Further studies are necessary to optimize 3D MRI techniques in other areas in human body.

  • PDF

Usefulness of Acoustic Noise Reduction in Brain MRI Using Quiet-T2 (뇌 자기공명영상에서 Quiet-T2 기법을 이용한 소음감소의 유용성)

  • Lee, SeJy;Kim, Young-Keun
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • Acoustic noise during magnetic resonance imaging (MRI) is the main source for patient discomfort. we report our preliminary experience with this technique in neuroimaging with regard to subjective and objective noise levels and image quality. 60 patients(29 males, 31 females, average age of 60.1) underwent routine brain MRI with 3.0 Tesla (MAGNETOM Tim Trio; Siemens, Germany) system and 12-channel head coil. Q-$T_2$ and $T_2$ sequence were performed. Measurement of sound pressure levels (SPL) and heart rate on Q-$T_2$ and $T_2$ was performed respectively. Quantitative analysis was carried out by measuring the SNR, CNR, and SIR values of Q-$T_2$, $T_2$ and a statistical analysis was performed using independent sample T-test. Qualitative analysis was evaluated by the eyes for the overall quality image of Q-$T_2$ and $T_2$. A 5-point evaluation scale was used, including excellent(5), good(4), fair(3), poor(2), and unacceptable(1). The average noise and peak noise decreased by $15dB_A$ and $10dB_A$ on $T_2$ and Q-$T_2$ test. Also, the average value of heartbeat rate was lower in Q-$T_2$ for 120 seconds in each test, but there was no statistical significance. The quantitative analysis showed that there was no significant difference between CNR and SIR, and there was a significant difference (p<0.05) as SNR had a lower average value on Q-$T_2$. According to the qualitative analysis, the overall quality image of 59 case $T_2$ and Q-$T_2$ was evaluated as excellent at 5 points, and 1 case was evaluated as good at 4 points due to a motion artifact. Q-$T_2$ is a promising technique for acoustic noise reduction and improved patient comfort.

Suggested Protocol for Efficient Medical Image Information Exchange in Korea: Breast MRI (효율적 의료영상정보교류를 위한 프로토콜 제안: 유방자기공명영상)

  • Park, Ji Hee;Choi, Seon-Hyeong;Kim, Sungjun;Yong, Hwan Seok;Woo, Hyunsik;Jin, Kwang Nam;Jeong, Woo Kyoung;Shin, Na-Young;Choi, Moon Hyung;Jung, Seung Eun
    • Journal of the Korean Society of Radiology
    • /
    • v.79 no.5
    • /
    • pp.254-258
    • /
    • 2018
  • Purpose: Establishment of an appropriate protocol for breast magnetic resonance imaging (MRI) in the study of image quality standards to enhance the effectiveness of medical image information exchange, which is part of the construction and activation of clinical information exchange for healthcare informatization. Materials and Methods: The recommended protocols of breast and MRI scans were reviewed and the questionnaire was prepared by a responsible researcher. Then, a panel of 9 breast dedicated radiologists was set up in Korea. The expert panel conducted a total of three Delphi agreements to draw up a consensus on the breast MRI protocol. Results: The agreed breast MRI recommendation protocol is a 1.5 Tesla or higher device that acquires images with prone position using a breast dedicated coil and includes T2-weighted and pre-contrast T1-weighted images. Contrast enhancement images are acquired at least two times, and include 60-120 seconds between images and after 4 minutes. The contrast enhancement T1-weighted image should be less than 3 mm in thickness, less than 120 seconds in temporal resolution, and less than $1.5mm^2$ in-plane pixel resolution. Conclusion: The Delphi agreement of the domestic breast imaging specialist group has established the recommendation protocol of the effective breast MRI.