DOI QR코드

DOI QR Code

Usefulness of Acoustic Noise Reduction in Brain MRI Using Quiet-T2

뇌 자기공명영상에서 Quiet-T2 기법을 이용한 소음감소의 유용성

  • Lee, SeJy (Department of Medical science Graduate school, Chonnam National University) ;
  • Kim, Young-Keun (Dept. of Radiotechnology, Gwang-ju Health university)
  • Received : 2016.01.31
  • Accepted : 2016.03.10
  • Published : 2016.03.31

Abstract

Acoustic noise during magnetic resonance imaging (MRI) is the main source for patient discomfort. we report our preliminary experience with this technique in neuroimaging with regard to subjective and objective noise levels and image quality. 60 patients(29 males, 31 females, average age of 60.1) underwent routine brain MRI with 3.0 Tesla (MAGNETOM Tim Trio; Siemens, Germany) system and 12-channel head coil. Q-$T_2$ and $T_2$ sequence were performed. Measurement of sound pressure levels (SPL) and heart rate on Q-$T_2$ and $T_2$ was performed respectively. Quantitative analysis was carried out by measuring the SNR, CNR, and SIR values of Q-$T_2$, $T_2$ and a statistical analysis was performed using independent sample T-test. Qualitative analysis was evaluated by the eyes for the overall quality image of Q-$T_2$ and $T_2$. A 5-point evaluation scale was used, including excellent(5), good(4), fair(3), poor(2), and unacceptable(1). The average noise and peak noise decreased by $15dB_A$ and $10dB_A$ on $T_2$ and Q-$T_2$ test. Also, the average value of heartbeat rate was lower in Q-$T_2$ for 120 seconds in each test, but there was no statistical significance. The quantitative analysis showed that there was no significant difference between CNR and SIR, and there was a significant difference (p<0.05) as SNR had a lower average value on Q-$T_2$. According to the qualitative analysis, the overall quality image of 59 case $T_2$ and Q-$T_2$ was evaluated as excellent at 5 points, and 1 case was evaluated as good at 4 points due to a motion artifact. Q-$T_2$ is a promising technique for acoustic noise reduction and improved patient comfort.

뇌 자기공명영상(Magnetic Resornance Imaging; MRI)에서 검사 중 발생되는 소음을 줄이기 위한 기법으로 경사 파형을 변경한 Quiet $T_2$-weighted Turbo Spin-Echo(이하 Q-$T_2$)와 일반적으로 사용되는 $T_2$-weighted Turbo Spin-Echo(이하 $T_2$) 영상의 소음수준 및 영상의 질을 비교하여 그 유용성을 알아보고자 하였다. 3.0T MR 기기로 뇌 MR 검사를 받은 60명(남자 29명, 여자 31명, 평균 연령 60.1세)의 환자를 대상으로 하였다. Q-$T_2$$T_2$ 각각의 영상에서 소음 및 심박동수를 측정하였다. 정량적 분석은 Q-$T_2$$T_2$의 SNR, CNR, SIR 값을 측정한 뒤 독립표본 T검정을 이용하여 통계적 분석을 하였다. 정성적 분석은 Q-$T_2$$T_2$의 전체적인 영상의 질에 대하여 육안으로 평가하였다. 평가는 5점 척도로서 우수(excellent) 5점, 양호(good) 4점, 보통(fair) 3점, 불량(poor) 2점, 평가불가(unacceptable) 1점으로 평가하였다. Q-$T_2$$T_2$ 검사 중 평균소음과 peak소음은 Q-$T_2$가 기존 $T_2$에 비해 각각 $15dB_A$, $10dB_A$ 감소하였다. 또한 각각의 검사 중 120초 동안 심박동수의 평균값은 Q-$T_2$에서 더 낮은 값으로 나타났지만 통계적인 유의성은 없었다. 정량적 분석의 결과 CNR과 SIR은 유의한 차이가 없었으며, SNR은 Q-$T_2$가 더 낮은 평균값을 보임으로서 유의한 차이를 보였다(p<0.05). 정성적 분석은 59개의 Q-$T_2$$T_2$ 영상의 질이 동일하게 우수(excellent) 5점으로 평가되었으며, 1개의 영상에서 모션 아티팩트로 인해 양호(good) 4점으로 평가되었다. Q-$T_2$는 기존의 $T_2$와 같이 검사시간 및 진단의 정확도는 동일하지만 소음을 효과적으로 감소시킬 수 있으며, 이로인하여 환자 편의를 향상시킬 수 있을 것으로 사료된다.

Keywords

References

  1. Moelker A, Maas RA, Pattynama PM. Verbal communication in MR environments: effect of MR system acoustic noise on speech understanding. Radiology, 232, 107-113, 2004 https://doi.org/10.1148/radiol.2321030955
  2. Quirk ME, Letendre AJ, Ciottone RA, et al. Anxiety in patients undergoing MR imaging. Radiology, 70, 463-466, 1989
  3. Brummett RE, Talbot JM, Charuhas P. Potential hearing loss resulting from MR imaging. Radiology, 169, 539-540, 1988 https://doi.org/10.1148/radiology.169.2.3175004
  4. Hedeen R, Edelstein W. Characterization and prediction of gradient acoustic noise in MR imagers. Magn Reson Med., 37, 7-10, 2005
  5. Cho ZH, Chung ST, Chung JY, Park SH, Kim JS, Moon CH, Hong IK. A new silent magnetic resonance imaging using a rotating DC gradient. Magn Reson Med, 39, 317-321, 1998 https://doi.org/10.1002/mrm.1910390221
  6. Pierre EY, Grodzki D, Heismann B, Aandal G, Gulani V, Sunshine J. et al. Making MRI Scanning Quieter: Optimized TSE Sequences with Parallel Imaging. MAGNETOM Flash, 05, 2013
  7. Shellock FG, Morisoli SM, Ziarati M. Measurement of acoustic noise during MR imaging: evaluation of six "worst case" pulse sequences. Radiology, 191, 91-93, 1994 https://doi.org/10.1148/radiology.191.1.8134603
  8. McJury M, Blug A, Joerger C, Condon B, Wyper D. Acoustic noise levels during magnetic resonance imaging scanning at 1.5 T. Br J Radiol, 67, 413-415, 1994 https://doi.org/10.1259/0007-1285-67-796-413
  9. McJury M. Acoustic noise levels generated during high field MR imaging. Clin Radiol, 50, 331-334, 1995 https://doi.org/10.1016/S0009-9260(05)83427-0
  10. Mansfield P, Haywood B. Principles of active acoustic control in gradient coil design. MAGMA, 10, 147-151, 2000 https://doi.org/10.1007/BF02601849
  11. Haywood B, Chapman B, Mansfield P. Model gradient coil employing active acoustic control for MRI. MAGMA, 20, 223-231, 2007 https://doi.org/10.1007/s10334-007-0086-y
  12. Shou X, Chen X, Derakhshan J, Eagan T, Baig T, Shvartsman S, et al. The suppression of selected acoustic frequencies in MRI. Appl Acoust, 71, 191-200, 2010 https://doi.org/10.1016/j.apacoust.2009.08.005
  13. Hennel F, Girard F, Loenneker T. "Silent" MRI with soft gradient pulses. Magn Reson Med, 42, 6-10, 1999 https://doi.org/10.1002/(SICI)1522-2594(199907)42:1<6::AID-MRM2>3.0.CO;2-D
  14. De Zwart J, Vangelderen P, Kellman P, Duyn J. Reduction of Gradient Acoustic Noise in MRI Using SENSE-EPI. Neuroimage, 16, 1151-1155, 2002 https://doi.org/10.1006/nimg.2002.1119
  15. Witzel T, Wald LL. Methods for Functional Brain Imaging. Massachusetts Institute of Technology; 2011
  16. McGlynn, F. D., Karg, R., & Lawyer, S. R. Fear response to mock magnetic resonance imaging among college students: Toward a prototype experiment. J Anxiety Disord, 17, 335-347, 2007
  17. McGlynn, F. D., Smitherman, T. A., Hammel, J. C., Lazarte, A. A. Component fears of claustrophobia associated with mock magnetic resonance imaging. Anxiety Disord, 21, 367-380, 2007 https://doi.org/10.1016/j.janxdis.2006.06.003
  18. Ye SY, Kim DH. Evalua+tion on the stress using HRV according to elapsed time of MRI noise. KISPS, 16(2), 50-55, 2015