• Title/Summary/Keyword: Terrestrial Mobile Mapping System

Search Result 8, Processing Time 0.032 seconds

A Study on the Algorithms of Terrestrial Photogrammetry using Vehicle (차량을 이용한 지상사진측량의 알고리즘에 관한 연구)

  • 정동훈;엄우학;김병국
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.145-150
    • /
    • 2003
  • Mobile mapping system is a surveying system that use vehicle carrying various sensors as CCD camera, GPS and IMU(Inertial measurement Unit). This system capturing images of forward direction continuously while running road. Use these images, then acquire road and road facilities information as facilities position, size or maintenance condition. In this study, we organized data and each data processing steps that are needed for 3 dimensional positioning. And develop digital photogrammetry S/W easy to use and accurate for mobile mapping system.

  • PDF

Classification of 3D Road Objects Using Machine Learning (머신러닝을 이용한 3차원 도로객체의 분류)

  • Hong, Song Pyo;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.535-544
    • /
    • 2018
  • Autonomous driving can be limited by only using sensors if the sensor is blocked by sudden changes in surrounding environments or large features such as heavy vehicles. In order to overcome the limitations, the precise road-map has been used additionally. This study was conducted to segment and classify road objects using 3D point cloud data acquired by terrestrial mobile mapping system provided by National Geographic Information Institute. For this study, the original 3D point cloud data were pre-processed and a filtering technique was selected to separate the ground and non-ground points. In addition, the road objects corresponding to the lanes, the street lights, the safety fences were initially segmented, and then the objects were classified using the support vector machine which is a kind of machine learning. For the training data for supervised classification, only the geometric elements and the height information using the eigenvalues extracted from the road objects were used. The overall accuracy of the classification results was 87% and the kappa coefficient was 0.795. It is expected that classification accuracy will be increased if various classification items are added not only geometric elements for classifying road objects in the future.

Extraction of Coast Topographic Information Using Mobile Laser Scanning and Airborne LiDAR (지상레이저스캐너와 항공라이다를 이용한 해안 지형정보 추출)

  • Lee, In-Su;Tcha, Dek-Kee;Kim, Su-Jeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.115-117
    • /
    • 2009
  • Terrestrial Laser Scanner and Airborne Laser Scanning is one of the state of art surveying equipments. So This study deals with the combined use of mobile TLS(Terrestrial Laser Scanner) with ALS(Airborne Laser Scanning) to extract shoreline's topography information. These two systems have their own pros and cons. Mobile TLS can capture the facades of a low story building along the shoreline fast and quickly. Meanwhile, Due to viewpoint restrictions of ALS data collection, the amount of detail, which is available for the building facades is very limited. Therefore, it is recommended that the co-registration and geo-referencing methods of both two should be developed and the application of both system for shoreline mapping also should be investigated.

  • PDF

Accuracy Analysis of Earthwork Volume Estimating for Photogrammetry, TLS, MMS (토공사 계측 방식(Photogrammetry, TLS, MMS)별 토공량 산정 정밀도 분석)

  • Park, Jae-Woo;Yeom, Dong-Jun;Kang, Tai-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.453-465
    • /
    • 2021
  • Recently, photogrammetry, TLS(Terrestrial Laser Scanner), MMS(Mobile Mapping System)-based techniques have been applied to estimate earthwork volume for construction management. The primary objective of this study is to analyze the accuracy of earthwork volume estimating between photogrammetry and TLS, MMS that improves the traditional surveying method in convenience, estimating accuracy. For this, the following research works are conducted sequentially; 1) literature review, 2) core algorithm analysis, 3) surveying data acquisition using photogrammetry, TLS, MMS, 4) estimated earthwork volume comparison according to surveying method. As a result of the experiment, it was analyzed that there were earthwork volume errors of 1,207.5m3 (14.03%) of UAV-based digital map, 391.5m3(4.55%) of UAV, TLS integrated digital map, and 294.9m3(3.43%) of UAV, MMS integrated digital map. It is expected that the result of this study will be enormous due to the availability of the analyzed data.

Levee Maintenance Using Point Cloud Data Obtained from a Mobile Mapping System (모바일 매핑시스템을 이용한 제방 유지보수에 관한 연구)

  • Lee, Jisang;Hong, Seunghwan;Park, Il suk;Mohammad, Gholami Farkoushi;Kim, Chulhwan;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.469-475
    • /
    • 2021
  • In order to effectively maintain and manage river facilities, on going data collection of associated objects is important. However, the existing data acquisition methods of using a total station, a global navigation satellite system, or a terrestrial laser scanner have limitations in terms of cost/time/manpower when acquiring spatial information data on river facilities distributed over a wide and long area, unlike general facilities. In contrast, a mobile mapping system (MMS), which acquires data while moving its platform, acquires precise spatial information data for a large area in a short time, so it is suitable for use in the maintenance of linear facilities around rivers. As a result of applying a MMS to a research area of 4 km, 184,646,099 points were acquired during a 20-minute data acquisition period, and 378 cross-sections were extracted. By comparing this with computer-drawn river plans, it was confirmed that efficient levee management using a MMS is possible.

A Comparative Study on the 3D Positioning Methods by CCD Images of The Mobile Mapping System (차량측량시스템의 CCD 영상에 의한 3차원 위치결정 방법 비교 연구)

  • Jeong, Dong-Hoon
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.169-180
    • /
    • 2007
  • Applicability of Land-based MMS(Mobile Mapping System) having been increased gradually as digitalization of administrative operation and construction of integrated systems of the government and provincial government are growing up. As these requirements, the case can be occurred that the facilities should be surveyed rapidly in the specific area. At this case, the real time field processing method is more necessary than the post processing method and data processing speed should be an essential element as important as accuracy. In this study, the two space intersection methods used in photogrammetry were programmed and compared with each other to select more proper method for the three dimensional positioning in the field processing. Especially, at the analytic space intersection, the traditional close range terrestrial photogrammetry was modified and applied to that to adapt to MMS's characteristics that camera position and attitude are changed according to the vehicle movement. As a result, the difference of the accuracy between two methods is not significant but at the calculation time, the analytic space intersection is faster three times than the space intersection using collinearity condition.

  • PDF

Automatic Extraction of River Levee Slope Using MMS Point Cloud Data (MMS 포인트 클라우드를 활용한 하천제방 경사도 자동 추출에 관한 연구)

  • Kim, Cheolhwan;Lee, Jisang;Choi, Wonjun;Kim, Wondae;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1425-1434
    • /
    • 2021
  • Continuous and periodic data acquisition must be preceded to maintain and manage the river facilities effectively. Adapting the existing general facilities methods, which include river surveying methods such as terrestrial laser scanners, total stations, and Global Navigation Satellite System (GNSS), has limitation in terms of its costs, manpower, and times to acquire spatial information since the river facilities are distributed across the wide and long area. On the other hand, the Mobile Mapping System (MMS) has comparative advantage in acquiring the data of river facilities since it constructs three-dimensional spatial information while moving. By using the MMS, 184,646,009 points could be attained for Anyang stream with a length of 4 kilometers only in 20 minutes. Levee points were divided at intervals of 10 meters so that about 378 levee cross sections were generated. In addition, the waterside maximum and average slope could be automatically calculated by separating slope plane form levee point cloud, and the accuracy of RMSE was confirmed by comparing with manually calculated slope. The reference slope was calculated manually by plotting point cloud of levee slope plane and selecting two points that use location information when calculating the slope. Also, as a result of comparing the water side slope with slope standard in basic river plan for Anyang stream, it is confirmed that inspecting the river facilities with the MMS point cloud is highly recommended than the existing river survey.

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.