DOI QR코드

DOI QR Code

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features

선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록

  • Kim, Eui Myoung (Department of Spatial Information Engineering, Namseoul University) ;
  • Seo, Hong Deok (Department of Spatial Information Engineering, Namseoul University)
  • Received : 2020.03.04
  • Accepted : 2020.04.18
  • Published : 2020.06.30

Abstract

Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.

3차원 등록은 서로 다른 좌표계를 갖거나 좌표계가 없는 데이터를 기준 좌표계로 일치시키는 과정으로 사진측량의 절대표정, 정밀도로지도 제작을 위한 데이터 결합 등 다양한 분야에서 사용되고 있다. 3차원 등록은 점을 이용하는 방법과 선형을 이용하는 방법으로 구분이 된다. 점을 이용할 경우 서로 다른 공간해상도를 갖는 경우 동일한 공액점을 찾기 어려운 문제가 있다. 이에 반해 선형을 이용할 경우 공간해상도가 다른 경우 뿐만 아니라 점군 형태의 데이터에서 시작점과 끝점이 같지 않은 공액의 선형을 이용하여 3차원 등록이 가능한 장점이 있다. 본 연구에서는 선형을 이용하여 3차원 등록을 수행하기 위해서 쿼터니언을 이용하여 두 데이터 간의 3차원 회전각을 결정한 후 축척과 3차원 이동량을 결정하는 방법을 제안하였다. 제안한 방법의 검증을 위해 실내에서 구축한 선형과 실외 환경의 지상 모바일매핑시스템을 통해 취득한 선형을 이용하여 3차원 등록을 각각 수행하였다. 실험결과, 실내 데이터를 이용한 경우 축척을 고정한 경우와 고정하지 않은 경우 평균제곱근오차는 각각 0.001054m와 0.000936m로 나타났다. 실외 데이터를 이용하여 500m 구간에서 3차원 변환을 수행한 결과 6개의 선형을 이용하였을 경우 평균 제곱근오차는 0.09412m로 나타났으며 정밀도로지도 제작을 위한 정확도를 만족하는 것을 알 수 있었다. 또한, 선형의 개수를 변화시킨 실험에서 9개 이상의 선형을 이용할 경우도 평균제곱근오차의 변화가 크지 않은 것을 통해 높은 정확도의 3차원 변환을 위해 9개의 선형으로도 충분한 것을 알 수 있었다.

Keywords

References

  1. Alshawa, M. (2007), ICL: Iterative closest line a novel point cloud registration algorithm based on linear features, Ekscentar, Vol. 10, pp. 53-59.
  2. Besl, P.J. and McKay, N.D. (1992), Method for registration of 3-D shapes, In: Sensor Fusion IV: Control Paradigms and Data Structures. International Society for Optics and Photonics, Vol. 1611, pp. 587-607.
  3. Choi, S.P., Lii, I.J., Park, B.W., and Kim, U.N. (2014), Error correction technique of terrestrial LiDAR data using plane equation. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 24-25 April, Seoul, Korea, pp. 329-334.
  4. Du, S., Liu, J., Zhang, C., Zhu, J., and Li, K. (2015), Probability iterative closest point algorithm for m-D point set registration with noise, Neurocomputing, Vol. 157, pp. 187-198. https://doi.org/10.1016/j.neucom.2015.01.019
  5. Habib, A., Ghanma, M., Morgan, M., and Ruzouq, R. (2005), Photogrammetric and LiDAR data registration using linear features, Photogrammetric Engineering & Remote Sensing, Vol. 71, No. 6, pp. 699-707. https://doi.org/10.14358/PERS.71.6.699
  6. He, F. and Habib, A. (2016), A closed-form solution for coarse registration of point clouds using linear features, Journal of Surveying Engineering, Vol. 142, No. 3, pp. 1-14.
  7. He, Y., Liang, B., Yang, J., Li, S., and He, J. (2017), An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features, Sensors, Vol. 17, No. 8, pp. 1862-1877. https://doi.org/10.3390/s17081862
  8. Horn, B.K. (1987), Closed-form solution of absolute orientation using unit quaternions, Journal of the Optical of America, Vol. 4, pp. 629-642. https://doi.org/10.1364/JOSAA.4.000629
  9. Hwang, Y.S., Lee, D.J, Yu, H.Y., and Lee, J.M. (2015), 2D grid map compensation using ICP algorithm based on feature points, Journal of Institute of Control, Robotics and Systems, Vol. 21, No. 10, pp. 965-971. https://doi.org/10.5302/J.ICROS.2015.14.0149
  10. Kim, E.M. (2018), Semi-automatic camera calibration using quaternions, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 36, No. 2, pp. 43-50. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2018.36.2.43
  11. Kim, E.M. and Choi, H.S. (2018), Analysis of the accuracy of quaternion-based spatial resection based on the layout of control points, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 36, No. 4, pp. 255-262. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2018.36.4.255
  12. Kim, E.M. and Hong, S.P. (2019), Comparison of point-based algorithms for absolute orientation, Journal of Institute of Control, Robotics and Systems, Vol. 25, No. 10, pp. 929-935. https://doi.org/10.5302/J.ICROS.2019.19.0114
  13. Kim, E.S., Choi, S.I., and Park, S.Y. (2014), Modified generalized ICP algorithm using color correlation. Journal of the Institute of Electronics and Information Engineers, 16-18 October, Jeju, Korea, pp. 417-418.
  14. Lee, H.S. (2015), Accuracy improvement of the ICP DEM matching, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 5, pp. 443-451. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2015.33.5.443
  15. Lee, J.H. and Ko, K.H. (2018), Utilization of GPS and IMU Sensors in the Initial Registration of Two Point Clouds, Korean Journal of Computational Design and Engineering, Vol. 23, No. 2, pp. 173-183. https://doi.org/10.7315/CDE.2018.173
  16. Li, Q. and Griffiths, J.G. (2000), Iterative closest geometric objects registration, Computers and mathematics with applications, Vol. 40, No. 10-11, pp. 1171-1188. https://doi.org/10.1016/S0898-1221(00)00230-3
  17. Michaels, R.J. (1999), A new closed-form approach to absolute orientation, Master's thesis, Lehigh University, Bethlehem, USA, 106p.
  18. Park, J.K. and Um, D.Y. (2020), Accuracy evaluation by point cloud data registration method, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 38, No. 1, pp. 35-41. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2020.38.1.35
  19. Poreba, M. and Goulette, F. (2015), A robust linear featurebased procedure for automated registration of point clouds, Sensors, Vol. 15, No. 1, pp. 1435-1457. https://doi.org/10.3390/s150101435
  20. Qin, B., Li, X., Jia, S., Yang, A., and Qiu, H. (2015), Advanced absolute orientation algorithm based on unit quaternion on alignment. In 2015 IEEE International Conference on Information and Automation, 8-10 August, Lijiang, China, pp. 499-503.
  21. Shen, Y.Z., Chen, Y., and Zheng, D.H. (2006), A quaternionbased geodetic datum transformation algorithm, Journal of Geodesy, Vol. 80, No. 5, pp. 233-239. https://doi.org/10.1007/s00190-006-0054-8
  22. Sheng, Q.H. and Zhang, B. (2017), Absolute orientation based on line coordinates, The Photogrammetric Record, Vol. 32, No. 157, pp. 12-32. https://doi.org/10.1111/phor.12178
  23. Shi, X., Liu, T., and Han, X. (2020), Improved iterative closest point (ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration, International Journal of Remote Sensing, Vol. 41, No. 8, pp. 3197-3220. https://doi.org/10.1080/01431161.2019.1701211