• 제목/요약/키워드: Terrestrial Laser Scanner (TLS)

검색결과 18건 처리시간 0.026초

지상레이저스캐너(TLS) 측량과 가이드라인에 관한 연구 (Investigation on Terrestrial Laser Scanner(TLS) Surveying and its Guideline)

  • 김진우;정운식;이영진
    • 한국지리정보학회지
    • /
    • 제24권4호
    • /
    • pp.55-64
    • /
    • 2021
  • 이 연구는 지상레이저스캐너(TLS)측량에 대한 관측실험과 분석을 통해 TLS 위치정확도와 운용방안을 분석하고 가이드라인을 제시한다. TLS 관측실험에서는 TS/GPS 기준점측량 기반으로 지상기준점과 TLS점을 설치하고 목제 목표판을 설계·제작하여 사용하였다. 실험결과에서는 TLS 스캔 데이터의 RMSE는 축척 1/250의 지형도 제작과 레벨 1/100의 BIM에 활용이 가능하며, 드론영상데이터와 상호보완이 가능하다. 그리고 실험과정과 결과의 분석을 통해 TLS측량에 대한 가이드라인을 제시하였다.

TLS용 테스트 타깃의 개발과 거리측정 정확도 검증 (The Evaluation of Distance Accuracy and The Test Target Manufacturing of A Terrestrial Laser Scanner)

  • 이인수;차득기;서호성
    • 한국측량학회지
    • /
    • 제30권3호
    • /
    • pp.279-285
    • /
    • 2012
  • 지상3차원레이저스캐너는 산사태 모니터링, 문화재 문서화, 토목건설, 도시공학 등의 분야에 그 활용이 날로 증가하고 있다. 그러나 지상3차원레이저스캐너의 측정값의 정확도 평가, 실험용 타깃 및 장비 교정, 그리고 시험 절차 등에 대한 국제 표준규정이 마련되어 있지 않다. 이에 본 연구에서 지상3차원레이저스캐너의 거리측정을 위한 타깃을 제작하였고, 또 이 타깃으로 지상3차원레이저스캐너의 거리측정 정확도를 검정하여 실험용 타깃으로서의 적합성을 확인하였다.

지상레이저스캐너와 항공라이다를 이용한 해안 지형정보 추출 (Extraction of Coast Topographic Information Using Mobile Laser Scanning and Airborne LiDAR)

  • 이인수;차득기;김수정
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2009년도 춘계학술발표회 논문집
    • /
    • pp.115-117
    • /
    • 2009
  • Terrestrial Laser Scanner and Airborne Laser Scanning is one of the state of art surveying equipments. So This study deals with the combined use of mobile TLS(Terrestrial Laser Scanner) with ALS(Airborne Laser Scanning) to extract shoreline's topography information. These two systems have their own pros and cons. Mobile TLS can capture the facades of a low story building along the shoreline fast and quickly. Meanwhile, Due to viewpoint restrictions of ALS data collection, the amount of detail, which is available for the building facades is very limited. Therefore, it is recommended that the co-registration and geo-referencing methods of both two should be developed and the application of both system for shoreline mapping also should be investigated.

  • PDF

토공사 계측 방식(Photogrammetry, TLS, MMS)별 토공량 산정 정밀도 분석 (Accuracy Analysis of Earthwork Volume Estimating for Photogrammetry, TLS, MMS)

  • 박재우;염동준;강태경
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.453-465
    • /
    • 2021
  • Recently, photogrammetry, TLS(Terrestrial Laser Scanner), MMS(Mobile Mapping System)-based techniques have been applied to estimate earthwork volume for construction management. The primary objective of this study is to analyze the accuracy of earthwork volume estimating between photogrammetry and TLS, MMS that improves the traditional surveying method in convenience, estimating accuracy. For this, the following research works are conducted sequentially; 1) literature review, 2) core algorithm analysis, 3) surveying data acquisition using photogrammetry, TLS, MMS, 4) estimated earthwork volume comparison according to surveying method. As a result of the experiment, it was analyzed that there were earthwork volume errors of 1,207.5m3 (14.03%) of UAV-based digital map, 391.5m3(4.55%) of UAV, TLS integrated digital map, and 294.9m3(3.43%) of UAV, MMS integrated digital map. It is expected that the result of this study will be enormous due to the availability of the analyzed data.

Remote sensing and photogrammetry techniques in diagnostics of concrete structures

  • Janowski, Artur;Nagrodzka-Godycka, Krystyna;Szulwic, Jakub;Ziolkowski, Patryk
    • Computers and Concrete
    • /
    • 제18권3호
    • /
    • pp.405-420
    • /
    • 2016
  • Recently laser scanning technologies become widely used in many areas of the modern economy. In the following paper authors show a potential spectrum of use Terrestrial Laser Scanning (TLS) in diagnostics of reinforced concrete elements. Based on modes of failure analysis of reinforcement concrete beam authors describe downsides and advantages of adaptation of terrestrial laser scanning to this purpose, moreover reveal under which condition this technology might be used. Research studies were conducted by Faculty of Civil and Environmental Engineering at Gdansk University of Technology. An experiment involved bending of reinforced concrete beam, the process was registered by the terrestrial laser scanner. Reinforced concrete beam was deliberately overloaded and eventually failed by shear. Whole failure process was tracing and recording by scanner Leica ScanStation C10 and verified by synchronous photographic registration supported by digital photogrammetry methods. Obtained data were post-processed in Leica Cyclone (dedicated software) and MeshLab (program on GPL license). The main goal of this paper is to prove the effectiveness of TLS in diagnostics of reinforced concrete elements. Authors propose few methods and procedures to virtually reconstruct failure process, measure geometry and assess a condition of structure.

Combining Machine Learning Techniques with Terrestrial Laser Scanning for Automatic Building Material Recognition

  • Yuan, Liang;Guo, Jingjing;Wang, Qian
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.361-370
    • /
    • 2020
  • Automatic building material recognition has been a popular research interest over the past decade because it is useful for construction management and facility management. Currently, the extensively used methods for automatic material recognition are mainly based on 2D images. A terrestrial laser scanner (TLS) with a built-in camera can generate a set of coloured laser scan data that contains not only the visual features of building materials but also other attributes such as material reflectance and surface roughness. With more characteristics provided, laser scan data have the potential to improve the accuracy of building material recognition. Therefore, this research aims to develop a TLS-based building material recognition method by combining machine learning techniques. The developed method uses material reflectance, HSV colour values, and surface roughness as the features for material recognition. A database containing the laser scan data of common building materials was created and used for model training and validation with machine learning techniques. Different machine learning algorithms were compared, and the best algorithm showed an average recognition accuracy of 96.5%, which demonstrated the feasibility of the developed method.

  • PDF

Waveform 방식의 지상라이다 거리측정 성능 실험 (Investigation of Distance Measurement Performance Using Waveform Clouds-Based Terrestrial Laser Scanner)

  • 이인수;김형무;차득기;이동락
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.45-47
    • /
    • 2010
  • Terrestrial Laser Scanner is widely useful in the cultural heritage documentation, acquisition of three-dimensional spatial information in the field of civil engineering and construction, and the safety monitoring for the inaccessible sites such as a few bridges and landslides. This study deals with the investigation of distance measurement and the performances assesment with waveform clouds-based(TLS).

  • PDF

Featured-Based Registration of Terrestrial Laser Scans with Minimum Overlap Using Photogrammetric Data

  • Renaudin, Erwan;Habib, Ayman;Kersting, Ana Paula
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.517-527
    • /
    • 2011
  • Currently, there is a considerable interest in 3D object reconstruction using terrestrial laser scanner (TLS) systems due to their ability to automatically generate a considerable amount of points in a very short time. To fully map an object, multiple scans are captured. The different scans need to be registered with the help of the point cloud in the overlap regions. To guarantee reliable registration, the scans should have large overlap ratio with good geometry for the estimation of the transformation parameters among these scans. The objective of this paper is to propose a registration method that relaxes/eliminates the overlap requirement through the utilization of photogrammetrically reconstructed features. More specifically, a point-based procedure, which utilizes non-conjugate points along corresponding linear features from photogrammetric and TLS data, will be used for the registration. The non-correspondence of the selected points along the linear features is compensated for by artificially modifying their weight matrices. The paper presents experimental results from simulated and real datasets to illustrate the feasibility of the proposed procedure.

표준거리측정 시설을 이용한 지상라이다 성능 평가 (Performance evaluation of Terrestrial Laser Scanner over Calibration Baseline)

  • 이인수;이재원
    • 한국측량학회지
    • /
    • 제28권3호
    • /
    • pp.329-336
    • /
    • 2010
  • 본 연구는 시간차방식(TOF: Time of flight)과 근적외선 파장대역(760-3000nm)을 사용하는 지상라이다를 이용해서 다양한 사용자 타깃에 대해 반사도와 거리정확도를 테스트하였다. 특별히 사용자 타깃에 대한 측점군의 반사도는 실내에서 독일 Gretag Macbeth사의 i1 분광광도계로 측정되었다. 그리고 지상라이다의 성능 평가를 위해 정밀 EDM 검기선장에서 지상라이다를 이용해서 타깃을 스캐닝 하여 기준표석간 이격거리를 측정하여 표준거리와 비교하였다. 테스트 결과로서, 약 10m 와 170m 기준표석간 이격거리에 설치된 흰색 수지 타깃을 제외하고, 실험에 이용된 다른 타깃들의 거리측정값은 기준거리와 수 mm 정확도 차이를 보였다. 향후 대기보정, 장비보정, 부가상수와 같이 거리정확도에 영향을 미치는 변수들에 대한 연구가 필요할 것으로 사료 된다.