• Title/Summary/Keyword: Terrain-adaptive

Search Result 45, Processing Time 0.03 seconds

A study on walking algorithm of quadruped robot used stroke control method in the irregular terrain (비평탄 지형에서 스토로크 제어법을 이용한 4족 로봇의 보행 알고리즘에 관한 연구)

  • Ahn, Young-Myung
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.52-59
    • /
    • 2006
  • Walking robot is able to move in regular or irregular terrain. It can walk that change adaptive algorithms according to the terrain. Existing papers about adaptive gaits of blind robot are based on intelligent foothold selection. However, this paper proposes a algerian that is based on the variations of stroke and period to adapt the irregular terrain. If thus adaptive algorithms is used, robot can maintain periodic gait walking and constant speed using only force sensor even in the irregular terrain without external sophisticated sensor. In this paper Quadruped robot with 2 DOF in each leg, is walk experiment with the wave gait in regular and irregular terrain. So the adaptive algorithm is proved useful through walk experiment.

Development of Terrain-Adaptive Attitude Controller for Hybrid Mobile Platform with Wheel & Track (휠-트랙 하이브리드 모바일 플랫폼을 위한 지형 적응성 장애물 극복 자세 제어기 개발)

  • Kwak, Jeong-Hwan;Kim, Yoon-Gu;Hong, Dae-Han;An, JinUng
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.61-70
    • /
    • 2012
  • This paper describes terrain-adaptive attitude controller for a hybrid mobile platform which operates in wheel & track mode. The wheel mode of the hybrid mobile platform allows quick driving performance in the flatland, while the track mode provides adaptive movement in the rough ground or stairway. The switching of the platform between two modes is automatically controlled by attitude controller algorithm. In addition, in the track mode, the platform automatically adjusts its attitude angle to overcome the obstacles in front. This paper demonstrates the attitude controller for the aforementioned wheel-track hybrid mobile platform in order to overcome terrain obstacles by using an adaptive method. The driving performance of the hybrid mobile platform has been tested and verified in various surrounding environments in both wheel and track mode. Further, this paper presents the experiments by using the track structure of mobile platform on forming adaptive attitude under various types of obstacles. The practicability and effectiveness of the proposed attitude controller of the platform has been demonstrated in urban building and a test-bed.

Design and Development of Terrain-adaptive and User-friendly Remote Controller for Wheel-Track Hybrid Mobile Robot Platform (휠-트랙 하이브리드 모바일 로봇 플랫폼의 지형 적응성 및 사용자 친화성 향상을 위한 원격 조종기 설계와 개발)

  • Kim, Yoon-Gu;An, Jin-Ung;Kwak, Jeong-Hwan;Moon, Jeon-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.558-565
    • /
    • 2011
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for surveillance, reconnaissance, search and rescue, etc. We considered a terrain-adaptive and transformable hybrid robot platform that is equipped with rapid navigation capability on flat floors and good performance in overcoming stairs or obstacles. The navigation mode transition is determined and implemented by adaptive driving mode control of the mobile robot. In order to maximize the usability of wheel-track hybrid robot platform, we propose a terrain-adaptive and user-friendly remote controller and verify the efficiency and performance through its navigation performance experiments in real and test-bed environments.

Terrain Referenced Navigation for Autonomous Underwater Vehicles (자율무인잠수정의 지형참조항법 연구)

  • Mok, Sung-Hoon;Bang, Hyochoong;Kwon, Jayhyun;Yu, Myeongjong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.702-708
    • /
    • 2013
  • Underwater TRN (Underwater Terrain Referenced Navigation) estimates an underwater vehicle state by measuring a distance between the vehicle and undersea terrain, and comparing it with the known terrain database. TRN belongs to absolute navigation methods, which are used to compensate a drift error of dead reckoning measurements such as IMU (Inertial Measurement Unit) or DVL (Doppler Velocity Log). However, underwater TRN is different to other absolute methods such as USBL (Ultra-Short Baseline) and LBL (Long Baseline), because TRN is independent of the external environment. As a magnetic-field-based navigation, TRN is a kind of geophysical navigation. This paper develops an EKF (Extended Kalman Filter) formulation for underwater TRN. A filter propagation part is composed by an inertial navigation system, and a filter update is executed with echo-sounder measurement. For large-initial-error cases, an adaptive EKF approach is also presented, to keep the filter be stable. At the end, simulation studies are given to verify the performance of the proposed TRN filter. With simplified sensor and terrain database models, the simulation results show that the underwater TRN could support conventional underwater navigation methods.

Document Image Binarization Using a Water Flow Model (Water Flow Model을 이용한 문서 영상의 이진화)

  • Kim, In-Gwon;Jeong, Dong-Uk;Song, Jeong-Hui;Park, Rae-Hong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.19-32
    • /
    • 2001
  • This paper proposes a local adaptive thresholding method based on a water flow model, in which an image surface is considered as a 3-dimensional (3-D) terrain. To extract characters from backgrounds, we pour water onto the terrain surface. Water flows down to the lower regions of the terrain and fills valleys. Then, the amount of filled water is thresholded, in which the proposed thresholding method is applied to gray level document images consisting of characters and backgrounds. The proposed method based on a water flow model shows the property of locally adaptive thresholding. Computer simulation with synthetic and real document images shows that the proposed method yields effective adaptive thresholding results for binarization of document images.

  • PDF

Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization (최적 4 진트리 격자화를 이용한 중력 및 중력 변화율 탐사에서의 고속 지형보정)

  • Davis, Kristofer;Kass, M.Andy;Li, Yaoguo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.88-97
    • /
    • 2011
  • We present a method for modelling the terrain response of gravity gradiometry surveys utilising an adaptive quadtree mesh discretization. The data- and terrain-dependent method is tailored to provide rapid and accurate terrain corrections for draped and barometric airborne surveys. The surface used in the modelling of the terrain effect for each datum is discretized automatically to the largest cell size that will yield the desired accuracy, resulting in much faster modelling than full-resolution calculations. The largest cell sizes within the model occur in areas of minimal terrain variation and at large distances away from the datum location. We show synthetic and field examples for proof of concept. In the presented field example, the adaptive quadtree method reduces the computational cost by performing 351 times fewer calculations than the full model would require while retaining an accuracy of one E$\"{o}$tv$\"{o}$s for the gradient data. The method is also used for the terrain correction of the gravity field and performed 310 times faster compared with a calculation of the full digital elevation model.

Adaptive Model-Free-Control-based Steering-Control Algorithm for Multi-Axle All-Terrain Cranes using the Recursive Least Squares with Forgetting (망각 순환 최소자승을 이용한 다축 전지형 크레인의 적응형 모델 독립 제어 기반 조향제어 알고리즘)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2017
  • This paper presents the algorithm of an adaptive model-free-control-based steering control for multi-axle all-terrain cranes for which the recursive least squares with forgetting are applied. To optimally control the actual system in the real world, the linear or nonlinear mathematical model of the system should be given for the determination of the optimal control inputs; however, it is difficult to derive the mathematical model due to the actual system's complexity and nonlinearity. To address this problem, the proposed adaptive model-free controller is used to control the steering angle of a multi-axle crane. The proposed model-free control algorithm uses only the input and output signals of the system to determine the optimal inputs. The recursive least-squares algorithm identifies first-order systems. The uncertainty between the identified system and the actual system was estimated based on the disturbance observer. The proposed control algorithm was used for the steering control of a multi-axle crane, where only the steering input and the desired yaw rate were employed, to track the reference path. The controller and performance evaluations were constructed and conducted in the Matlab/Simulink environment. The evaluation results show that the proposed adaptive model-free-control-based steering-control algorithm produces a sound path-tracking performance.

Sensor Fusion based Obstacle Avoidance for Terrain-Adaptive Mobile Robot (센서융합을 이용한 부정지형 적응형 이동로봇의 장애물 회피)

  • Yuk, Gyung-Hwan;Yang, Hyun-Seok;Park, Noh-Chul;Lee, Sang-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2007
  • The mobile robots to rescue a life in a disaster area and to explore planets demand high mobility as well as recognition of the environment. To avoid unknown obstacles exactly in unknown environment, accurate sensing is required. This paper proposes a sensor fusion to recognize unknown obstacles accurately by using low-cost sensors. Ultrasonic sensors and infrared sensors are used in this paper to avoid obstacles. If only one of these sensors is used alone, it is not useful fer the mobile robots to complete their tasks in the real world since the surrounding environment in the real world is complex and composed of many kinds of materials. So infrared sensor may not recognize transparent or reflective obstacles and ultrasonic sensor may not recognize narrow obstacles, far example, columns of small diameter. Therefore, I selected six ultrasonic sensors and five infrared sensors to detect obstacles. Then, I fused ultrasonic sensors with infrared sensors in order that both advantages and disadvantages of each sensor are utilized together. In fusing sensors, fuzzy algorithm is used to cope with the uncertainties of each sensor. TAMRY which is terrain-adaptive mobile robot is used as the mobile robot for experiments.