• Title/Summary/Keyword: Terrain map

Search Result 355, Processing Time 0.02 seconds

Design of Mixed Reality Visualization System for Operational Situation Using Cloud-based Geospatial Information (클라우드 기반 지리공간정보를 활용한 작전상황 혼합현실 가시화 시스템 설계)

  • Youngchan Jang;Jaeil Park;Eunji Cho;Songyun Kwak;Sang Heon Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.60-69
    • /
    • 2024
  • The importance of geospatial information is increasingly highlighted in the defense domain. Accurate and up-to-date geospatial data is essential for situational awareness, target analysis, and mission planning in millitary operations. The use of high-resolution geospatial data in military operations requires large storage and fast image processing capabilities. Efficient image processing is required for tasks such as extracting useful information from satellite images and creating 3D terrain for mission planning, In this paper, we designed a cloud-based operational situation mixed reality visualization system that utilizes large-scale geospatial information distributed processed on a cloud server based on the container orchestration platform Kubernetes. We implemented a prototype and confirmed the suitability of the design.

A Modified Logistic Regression Model for Probabilistic Prediction of Debris Flow at the Granitic Rock Area and Its Application; Landslide Prediction Map of Gangreung Area (화강암질암지역 토석류 산사태 예측을 위한 로지스틱 회귀모델의 수정 및 적용 - 강릉지역을 대상으로)

  • Cho, Yong-Chan;Chae, Byung-Gon;Kim, Won-Young;Chang, Tae-Woo
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.115-128
    • /
    • 2007
  • This study proposed a modified logistic regression model for a probabilistic prediction of debris flow on natural terrain at the granitic rock area. The modified model dose not contain any categorical factors that were used in the previous model and secured higher reliability of prediction than that of the previous one. The modified model is composed of lithology, two factors of geomorphology, and three factors of soil property. Verification result shows that the prediction reliability is more than 86%. Using the modified regression model, the landslide prediction maps were established. In case of Sacheon area, the prediction map showed that the landslide occurrence was not well corresponded with the model since, even though the forest-fred area was distributed on the center of the model, no factors were considered for the landslide predictions. On the other hand, the prediction model was well corresponded with landslide occurrence at Jumunjin-Yeongok area. The prediction model developed in this study has very high availability to employ in other granitic areas.

Manufacture Lenticular Map of Golf Courses Using Digital Orthophoto (수치정사영상을 이용한 렌티큘러 코스맵 제작)

  • Kim, Kam-Lae;Cheong, Hae-Jin;Cho, Won-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.475-482
    • /
    • 2007
  • Most golfers believe that knowing yardages will improve their score. Certainly it helps with club selection. But, simple "Graphic" yardage guides being notorious for error and inaccuracies, which a serious golfer will pick immediately, only serve to erode the players enjoyment and ultimately, golf course satisfaction. Someone believes with low-level aerial photographic images, golfer will be impressed with the accuracy of the depiction, helping them play a more confident game. But, there are no mapping products in true 3-D available in the world that allows a golfer to determine shot distances in yards or meters. So, we suggest an lenticular technology for real 3-D display as a viable alternative to conventional image map solution. This technology is an image display method for the generation of multi-image effects like 3D visualization or animation. This methodology is cutting edge stereoscopic image which overcomes the limitation of conventional photo tech by recomposing and producing 3 dimensional images. A significant strength of this methods its versatility concerning display effects. The main use of the hardcopy 3-D lenticular displays is in the fields of science, education, planning, and representation. This paper gives a concise overview of the lenticular foil technology and describes the production of the true 3-D yardage book of golf courses. For this study, 3-D effects are achieved and evaluated with the lenticular display by incorporation multiple synthetic images based on digital topographic terrain model and by using the two images of the actual stereopair.

A generation method of ASF mapping by the predicted ASF with the measured one in the Yeongil Bay (ASF 예측모델과 실측치를 이용한 영일만 해상 ASF 맵 생성기법)

  • Hwang, Sang-Wook;Shin, Mi Young;Choi, Yun Sub;Yu, Donghui;Park, Chansik;Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Sang Jeong
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • In order to establish eLoran system it needs the betterment of a receiver and a transmitter, the add of data channel to loran pulse for loran system information and the differential Loran for compensating Loran-c signal. Precise ASF database map is essential if the Loran delivers the high absolute accuracy of navigation demanded at maritime harbor entrance. In this study we developed the ASF mapping method using predicted ASFs compensated by the measured ASFs for maritime in the harbor. Actual ASF is measured by the legacy Loran signal transmitted from Pohang station in the GRI 9930 chain. We measured absolute propagation delay between the Pohang transmitting station and the measurement points by comparing with the cesium clock for the calculation of the ASFs. Monteath model was used for the irregular terrain along the propagation path in the Yeongil Bay. We measured the actual ASFs at the 12 measurement points over the Yeongil Bay. In our ASF-mapping method we estimated that the each offsets between the predicted and the measured ASFs at the 12 spaced points in the Yeongil. We obtained the ASF map by adjusting the predicted ASF results to fit the measured ASFs over Yeungil bay.

Intertidal DEM Generation Using Waterline Extracted from Remotely Sensed Data (원격탐사 자료로부터 해안선 추출에 의한 조간대 DEM 생성)

  • 류주형;조원진;원중선;이인태;전승수
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.221-233
    • /
    • 2000
  • An intertidal topography is continuously changed due to morphodynamics processes. Detection and measurement of topographic change for a tidal flat is important to make an integrated coastal area management plan as well as to carry out sedimentologic study. The objective of this study is to generate intertidal DEM using leveling data and waterlines extracted from optical and microwave remotely sensed data in a relatively short period. Waterline is defined as the border line between exposed tidal flat and water body. The contour of the terrain height in tidal flat is equivalent to the waterline. One can utilize satellite images to generate intertidal DEM over large areas. Extraction of the waterline in a SAR image is a difficult task to perform partly because of the presence of speckle and partly because of similarity between the signal returned from the sea surface and that from the exposed tidal flat surface or land. Waterlines in SAR intensity and coherence map can effectively be extracted with MSP-RoA edge detector. From multiple images obtained over a range of tide elevation, it is possible to build up a set of heighted waterline within intertidal zone, and then a gridded DEM can be interpolated. We have tested the proposed method over the Gomso Bay, and succeeded in generating intertidal DEM with relatively high accuracy.

The Utilization of DEM Made by Digital Map in Height Evaluation of Buildings in a Flying Safety Area (비행안전구역 건물 높이 평가에서 수치지형도로 제작한 DEM의 활용성)

  • Park, Jong-Chul;Kim, Man-Kyu;Jung, Woong-Sun;Han, Gyu-Cheol;Ryu, Young-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.78-95
    • /
    • 2011
  • This study has developed various DEMs with different spatial resolutions using many different interpolation methods with the aid of a 1:5,000 digital map. In addition, this study has evaluated the vertical accuracy of various DEMs constructed by check point data obtained from the network RTK GPS survey. The obtained results suggest that a DEM developed from the TIN-based Terrain method performs well in evaluating height restriction of buildings in a flying safety area considering general RMSE values, land-type RMSE values and profile evaluation results, etc. And, it has been found that three meters is the right spatial resolution for a DEM in evaluating height restriction of buildings in a flying safety area. Meanwhile, elevation values obtained by the DEM are not point estimation values but interval estimation values. This can be used to check whether the height of buildings in the vicinity of an airfield violates height limitation values of the area. To check whether the height of buildings measured in interval estimation values violates height limitation values of the area, this study has adopted three steps: 1) high probability of violation, 2) low probability of violation, 3) inconclusiveness about the violation. The obtained results will provide an important basis for developing a GIS related to the evaluation of height restriction of buildings in the vicinity of an airfield. Furthermore, although results are limited to the study area, the vertical accuracy values of the DEM constructed from a two-dimensional digital map may provide useful information to researchers who try to use DEMs.

Development of a GIS-based Computer Program to Design Countermeasures against Debris Flows (GIS기반 토석류 산사태 대응공법 설계 프로그램 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • We developed a computer program (CDFlow v. 1.0) to design countermeasures against debris flows in natural terrain. The program can predict the probability of landslides occurring in natural terrain and can estimate the zone of damage caused by a debris flow. It can also be used to design the location and size of countermeasures against the debris flow. The program is run using the ArcGIS Engine, which is one of the most well-known Geographic Information System (GIS) tools for developers. The quasi-dynamic wetness index and the infinite slope stability equation were applied to predict landslide probability as a type of slope safety factor. The calculated safety factor was compared with the required safety factor, and areas of high probable potential for landslides were then selected and represented on the digital map. The volume of debris flow was estimated using these areas of high probable potential for landslides and soil depth. The accumulated volume of debris flow can be calculated along the flow channel. To assess the accuracy of the program, it was applied to a real landslide site at Deoksan-ri, Inje-gun, Kangwon-Province, where four debris barriers have been installed in the watershed of the site. The results of soil tests and a field survey indicate that the program has great potential for estimating probable landslide areas and the trajectory of debris flows. Calculation of the capacity volume of existing debris barriers revealed that they had insufficient capacity to store the calculated amount of debris flow. Therefore, this program enables a rational estimation of the optimal location and size of debris barriers.

Layered Visibility Graph With Convex Hull to Avoid the Complex Terrain for UAV (무인기의 복잡한 지형 회피를 위한 Convex Hull 기반의 계층형 Visibility Graph)

  • Lim, Daehee;Park, Jihoon;Min, Chanoh;Jang, Hwanchol;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.874-880
    • /
    • 2019
  • This paper introduces a method which can be effectively used for the path planning of UAV in a realistic map which has mountainous terrains, air defense networks and radars based on the Visibility Graph. Existing studies of Visibility Graph have been studied mainly for simple shape obstacles in 2-dimensional environment such as self-driving cars which avoid buildings. However, for UAV, Visibility Graph must be used in 3-dimensional environment for the variance of altitude. This occurs significant elapsed time increase because of the increase of the amount of the visibility of node sets. To solve this problem, this paper decrease the number of nodes which consists the complex terrain environments using convex hull based on Layered Visibility Graph. With convex hull method, this paper confirmed that the elapsed time is decreased about 99.5% compared to the case which has no decrease of the number of nodes.

Using Numerical Maps to Select Solar Panel Installation Sites no Expressway Slopes (수치지도를 이용한 고속국도 주변 태양광 패널 설치 대상지 선정)

  • Jung, Jaehoon;Kim, Byungil
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.71-77
    • /
    • 2016
  • Solar energy is a viable source to replace fossil fuels. However, challenges associated with site selection for solar panel installation inhibit the uptake of solar energy systems. Expressway slopes offer a potentially attractive alternative for solar panel installation for the following reasons: expressway slopes are vacant public sites, they are abundant (about 4,193km in South Korea), and they are linear in nature. Traditoinally when selecting sites for solar systems conventional surveying methods are employed. Unfortunately, these methods can be dangerous, time consuming, and labor intensive. To overcome these limitations of conventional site selection methodologies, we propose an automated approach using numerical maps. First, contour and expressway polylines are extracted separately from numeric maps. The extracted contour lines are then converted into a digital terrain model; this is used to calculate aspect and slope information. Next, the extracted expressway lines are projected onto a binary image and refined to recover the disconnections, and then applied to create a buffer zone to narrow the search space. Finally, all data sets are overlaid to identify candidate sites for solar panel systems and are visually verified through comparisons with aerial photos.

Analysis of Tidal Channel Variations Using High Spatial Resolution Multispectral Satellite Image in Sihwa Reclaimed Land, South Korea (고해상도 다분광 인공위성영상자료 기반 시화 간척지 갯골 변화 양상 분석)

  • Jeong, Yongsik;Lee, Kwang-Jae;Chae, Tae-Byeong;Yu, Jaehyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2020
  • The tidal channel is a coastal sedimentary terrain that plays the most important role in the formation and development of tidal flats, and is considered a very important index for understanding and distribution of tidal flat sedimentation/erosion terrain. The purpose of this study is to understand the changes in tidal channels by a period after the opening of the floodgate of the seawall in the reclaimed land of Sihwa Lake using KOMPSAT high-resolution multispectral satellite image data and to evaluate the applicability and efficiency of high-resolution satellite images. KOMPSAT 2 and 3 images were used for extraction of the tidal channels' lineaments in 2009, 2014, and 2019 and were applied to supervised classification method based on Principal Component Analysis (PCA), Artificial Neural Net (ANN), Matched Filtering (MF), and Spectral Angle Mapper (SAM) and band ratio techniques using Normalized Difference Water Index (NDWI) and MF/SAM. For verification, a numerical map of the National Geographic Information Service and Landsat 7 ETM+ image data were utilized. As a result, KOMPSAT data showed great agreement with the verification data compared to the Landsat 7 images for detecting a direction and distribution pattern of the tidal channels. However, it has been confirmed that there will be limitations in identifying the distribution of tidal channels' density and providing meaningful information related to the development of the sedimentary process. This research is expected to present the possibility of utilizing KOMPSAT image-based high-resolution remote exploration as a way of responding to domestic intertidal environmental issues, and to be used as basic research for providing multi-platform-image-based convergent thematic maps and topics.