• 제목/요약/키워드: Terrain data

Search Result 945, Processing Time 0.034 seconds

Analysis of Digital Terrain Model Display by Comparison of GIS Shaded Relief and Rendering (GIS 음영기복과 렌더링의 비교에 의한 수치지형모형의 표현 분석)

  • Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.127-136
    • /
    • 2006
  • Shaded relief is used in the analysis of digital terrain model, but accurate shadow zone has not been affirmed on account of idea only shadow of terrain that would be in shadow are shaded. This study is to analyze each display difference of a digital terrain model by grasping the shadow characteristics of terrain and comparing shaded relief function used terrain display of GIS with a rendering technique. After terrain with road in subject area is selected and created to digital terrain model of TIN, shaded relief and rendering according to altitude and azimuth of the sun at 9:00 am and 3:00 pm is applied. As the results, only backward portions of the terrain that is in shadow from the sunlight are shaded in case of shaded relief. The rendering created the shadow, which is cast by terrain features. By these mutual comparison, this study represented data for understanding of shaded relief. And it is expected that the rendering method could be used to analyze sunshine influence.

  • PDF

Comparative Analysis of Terrain Slope Using Digital Map, LiDAR Data (수치지형도와 LiDAR 데이터를 이용한 지형경사도 비교분석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Min, Kwan-Sik;Rhee, Won-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.3-9
    • /
    • 2007
  • Recently, the efforts of systematic understanding and utilization of geographic phenomenon for human life as a important factor among activity of mankind are increasing. It is necessary to express topography connected with space. Especially, the technology of geographic analysis using DEM can supply the information rapidly and accurately about elevation and terrain slope of the subject area under the necessity of high 3D quality geographic information. In this study, creating more precise DEM derived from LiDAR data, quantitative analysis on the subject area about elevation and terrain slope is done under comparison with Digital Topographic map Scale 1:1000. LiDAR data is more detailed than Digital Topographic map to express the elevation of the subject area ($39.89{\sim}77.48m$), and terrain slope by analysis using DEM derived from LiDAR data come out minutely about 90%. It can be concluded that the LiDAR data is very applicable and accurate for 3D topographic terrain slope analysis.

  • PDF

The Path Loss Prediction in Korean Terrain Environment (한국 지형에서의 무선호출 주파수 대역의 전계강도 예측모델)

  • 이형수;조삼모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.219-229
    • /
    • 1996
  • Path loss prediction method, one of the most essential parts in measuring the service area in mobile telecommunication, has been developed for many years. But, wave propagation depends on many kinds of environmental factors such as frequency, distance, the heights of transmitting and receiving antenna and the terrain status(buildings in large city, hilly terrain, mountain). These are the main reasons that the propagation models developed in foreign environments can not fit into Korean propagation condition. In this paper, therefore, we performed the measurement in Korean terrain environment in pager frequency band after deviding the terrain characteristics into six types. With this measured data, we derived several curves that follows the long-term wave progagation behavior and developed the wave propagftion prediction model which calculates the field strength at any point in the service area. The proposed model estimates the field strength in two categories, LOS(line-of-sight), or non LOS. We applied this model using the digital terrain data base and compared with the measured data. The result shows that the errors were between 3~9dB, which turned out to be practical.

  • PDF

Effective Decision of the Route Alignment with Digital Terrain (수치지형모형을 이용한 효율적인 노선결정)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Lee, Hyung-Seok;Lee, Sung-Soong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.195-203
    • /
    • 1996
  • The 3-D analysis of terrain for route design and selection is being used as important basic data for effective judgement of political draft. This study is to decide efficient alignment of the entry route and design bridge by modeling, analyzing and displaying surface with digital terrain data. In this study we analyze slope, aspect, shaded-relief, line of sight and watershed on the base of DTM such as contour, TIN and grid. And we can not only esti mate end-area volume for road construction by calculating cut and fill and displaying mass-curve but also recognize the scene after execution with simulation of road and terrain. The result of this study reveals that visual effects of the 3-D terrain data are very effective for designer and decisionmaker to select and review alternative route with regard to terrain characteristics.

  • PDF

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

Design and Implementation of GIS Based Automatic Terrain Analysis System for Field Operation

  • Kim, Kyoung-Ok;Yang, Young-Kyu;Lee, Jong-Hoon;Choi, Kyoung-Ho;Jung, In-Sook;Kim, Tae-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.121-132
    • /
    • 1994
  • A GIS based tactical terrain analysis system named ATTAS(Army Tactical Terrain Analysis Software) has been designed and implemented to support the field commanders for enhancing the capabiliy of their unit and efficiency of weapon system. This system is designed to provide computer graphics environment in which the analyst can interactively operate the entire analyzing process such as selecting the area of interest, performing analysis functions, simulating required battlefield operation and display the results. This system can be divided into three major sections; the terrain analysis modules, utilites, and graphic editor. The terrain analysis module inclused surface analysis, line of sight analysis, enemy disposition, 3D display, radar coverage, logistic route analysis, shortest path analysis, atmospheric phenomena prediction, automated IPB (Inteligence preparation of Battlefield), and other applied analysis. A combination of 2D and 3D computer graphics techniques using the X-window system with OSF/Motif in UNIX workstation was adopted as the user interface. The integration technique of remotely sensed images and GIS data such as precision registration, overlay, and on-line editing was developed and implemented. An efficient image and GIS data management technique was also developed and implemented using Oracle Database Management System.

A Numerical Simulation Study on the Sensitivity of WRF Model in the Wind Field to the Steepness of Mountain Slopes (산 경사면의 기울기 변화에 따른 바람장의 민감도에 관한 WRF 수치모의 연구)

  • Han, Seon-Ho;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.349-364
    • /
    • 2007
  • The main purpose of this study is to examine the sensitivity of the WRF (Weather Research and Forecasting) in the wind field to the steepness of mountains in the case with a strong downslope wind occurred in the Yeongdong province. We conducted WRF simulations for February 13 2006. The initial and boundary data are from the NCEP/NCAR $1^{\circ}{\times}1^{\circ}$ GDAS. Arbitrary terrains of the mountains with a symmetric orography and an asymmetric one with steeper leeward slope, were introduced to examine the sensitivity of the shape of the mountains. The simulation with an asymmetric terrain results in stronger maximum surface wind by about $10ms^{-1}$ than with a symmetric terrain, especially in the narrow region from the peak to ~ 4 km away in the downstream. However, the maximum surface wind speed is weaker by $20ms^{-1}$ than with a symmetric terrain away from the narrow peak region. This indicates that the steeper slope leads to the intensification of downslope wind in the narrower region leeward. In addition, for the simulation with an asymmetric terrain, the strength of wave breaking is greater and the Lee wave is more dominant than for that with a symmetric terrain.

Numerical Analysis of the Two-Dimensional Pollutant Dispersion Over Hilly Terrain (산지 내 오염물질 확산의 2차원 수치해석)

  • 김현구;이정묵
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.383-396
    • /
    • 1997
  • Numerical prediction of the pollutant dispersion over a two-dimensional hilly terrain is presented. The dispersion model used in the present work is based on the gradient diffusion theory and the finite-volume method on a non-orthogonal boundary-fitted grid system. The numerical model is validated by comparing the results with the available experimental data for the flat-floor dispersion within a turbulent boundary-layer. The numerical error analysis is performed based on the guideline of Kasibhatla et al.(1988) for the elevated-source dispersion in the flat-floor boundary layer having a power-law velocity and linear eddy-diffusivity profile. The influences of the two-dimensional hilly terrain on the dispersion from a continuously released source are numerically investigated by changing the emission locations and heights. It is found that the distributions of ground-level concentration are strongly influenced by the source location and the emission height. Hence, the terrain amplification factor is greatly enhanced when the pollutant source is located within a flow separation region. Dispersion from a source of short duration is also simulated and the duration time of the pollutant is compared at several downstream locations on a hilly terrain. The results of the numerical prediction are applied to the evaluation of environmental impacts due to the automobile exhausts at the seashore highway with a parallel mountain range.

  • PDF

Evaluating Suitable Analysis Methods Using Digital Terrain in Viewshed Analysis (수치지형도를 활용한 가시권 분석의 적정 분석방법에 관한 연구)

  • Yeo, Chang-Hwan;Jang, Young-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.40-48
    • /
    • 2011
  • The purpose of this study is to contribute enhancing the accuracy of viewshed analysis through the explanation for an analysis method of viewshed analysis using GIS. According to previous studies, the visible area using digital terrain in viewshed analysis depends on a visible interest area, scale of terrain, spatial resolution and surface data. In this study, we used trend analysis and RMSE analysis in order to find the effect of a visible interest area, scale of terrain, etc in viewshed analysis. Results of this study are as follows. First, the result of viewshed analysis depends on a visible interest area, scale of terrain, spatial resolution, surface data such as previous studies. Second, the results in forest area are reliable than those of flat area in terms of a visible interest area. Third, the results based on raster grid data are stable than those of TIN(triangulated irregular network) in terms of input surface data. Fourth, according to the result of trend and RMSE analysis, the spatial resolution for analysis is differently applied to different scales digital terrain map in viewshed analysis. In detail, it is desirable that the spatial resolution is set less than 10m(in the case of 1/1,000 digital terrain map), 20m(in the case of 1/5,000 map), 30m(1/25,000 map).

Segmentation of LiDAR Point Data Using Contour Tree (Contour Tree를 이용한 LiDAR Point 데이터의 분할)

  • Han Dong-Yeob;Kim Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.463-467
    • /
    • 2006
  • Several segmentation algorithms have been proposed for DTM generation or building modeling from airborne LiDAR data. Three components are important for accurate segmentation: (i) the adjacent relationship of n-nearest points or mesh, etc. (ii) the effective decision parameters of height, slope, curvature, and plane condition, (iii) grouping methods. In this paper, we created the topology of point cloud data using the contour tree and implemented the region-growing Terrain and non-terrain points were classified correctly in the segmented data, which can be used also for feature classification.

  • PDF