• Title/Summary/Keyword: Terahertz-Ray

Search Result 17, Processing Time 0.024 seconds

Polymorphic Forms of Furosemide Characterized by THz Time Domain Spectroscopy

  • Ge, Min;Liu, Guifeng;Ma, Shihua;Wang, Wenfeng
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2265-2268
    • /
    • 2009
  • Terahertz time domain spectroscopy (THz-TDS) is applied in transmission to identify the five forms of modifications of furosemide and one commercial product from 0.3 THz to 1.6 THz at room temperature. The different absorption spectra of the different forms are sensitive to crystal structures. Density function theory (DFT) calculation was used to understand the vibrational modes of furosemide in the THz region. X-ray powder diffractometry (XRPD) was applied to confirm the different forms of modifications. The results demonstrate that THz-TDS is a potential analytical technique in investigating polymorphic forms in the pharmaceutical fields.

Study of Noncontact Condition Diagnosis on Painting with Terahertz Waves (테라헤르츠파를 이용한 회화문화재 상태진단 적용연구)

  • Baek, Na Yeon;Kang, Dai Ill;Ha, Tae Woo;Sim, Kyung Ik;Lee, Ho Won;Kim, Jae Hoon;Lee, Han Hyoung
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.235-247
    • /
    • 2016
  • Conventional imaging techniques such as ultraviolet, infrared, and X-ray are used mainly to diagnose the damaged parts of the painted cultural assets in Korea. These techniques, however, have limits in diagnosing damages of interlayer parts. We have performed and extensive study on the applicability of Terahertz(THz) analysis technique, introduced recently to this field of study on cultural properties in Korea, to diagnose painted cultural assets. The specimens, produced to imitate the damage types of Korean painted properties, were analyzed over their painting, supporting, and backing layers by terahertz pulse imaging technique. The analyzed results provided information about the cracks, the separated areas, and the separated distances between layers on the specimens. Our research, then, was extended to real painted cultural remains, Birojana Sam-shin Gwebul-do at Bongseon Temple in Namyang-ju, Korea National Treasure Number 1792, through which we have obtained 3D information about the extent and pattern of damages to the asset. These results demonstrate that terahertz 3D imaging technique has the capability of noncontact 3D diagnosis on painted cultural properties.

Terahertz Transmission Images For Medical Applications (테라헤르쯔 전자파 의료 영상 기술)

  • Jaeyoung Ryu;Yuchul Jung;Seungyong Baek;Lee, Jongjoo;Kim, Joungho;Soontae Kwon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.118-120
    • /
    • 2000
  • Currently, x-ray is mostly used for the diagnosis of dental cavity and osteoporosis. The osteoporosis is broadly defined as a decrease in the amount of bone mass per unit volume of the bone. Clinically the manifestation of low bone mass presents a clinical problem to the general population as an increase in fracture risk and especially in aging population[1]. Although the amount of the irradiated x-ray to the human body for the clinical diagnosis is relatively small, the exposition of the x-ray to the human body should be minimized as much as possible, since the x-ray is an ionizing radiation. To investigate other possible systems replacing X-ray, ultrasonic imaging and MRI(Magneto-Resonance-Imaging) systems were studied. Unfortunately, an effective and safe diagnosis tool for detecting the dental cavity and the osteoporosis is currently lacking. (omitted)

  • PDF

Terahertz Pulse Generation and Its Applications (테라헤르츠 펄스의 발생 및 그 응용)

  • 손주혁
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.20-21
    • /
    • 2000
  • 헤르츠가 최초로 무선통신의 가능성을 보인 이후 인류는 수 킬로헤르츠 (kHz)의 주파수를 이용하기 시작하여 메가헤르츠 (MHz) 대역에서 라디오, 텔레비젼, 음성 통신 등의 엄청난 기술적 발전으로 문명에 기여해 왔다. 이 MHz 대역이 포화하기 시작하자 더 높은 주파수의 기술을 연구하여 개인 휴대통신, 위성통신 등에 기가헤르츠 (GHz) 대역을 활용하였다. 반면에 빛이라 불리는 매우 높은 주파수의 전자기파는 뢴트겐이 X-ray를 투시 촬영기에 이용한 이래 광통신 등이 발명되어 가시광선에서 적외선까지 더 낮은 주파수 쪽으로 발전·활용되어 왔다. 이러한 광파와 마이크로 전자기파 사이의 테라헤르츠 (THz)주파수 대역 (또는 원적외선 영역 혹은 T-ray라 불림)은 많은 잠재적인 응용분야에도 불구하고 용이한 신호원의 부재로 기초적인 연구도 미비한 상태이다 (그림1 참조). (중략)

  • PDF

Correlation between terahertz characteristics and defect states in LTG-InGaAs

  • Park, Dong-U;Kim, Jun-O;Lee, Sang-Jun;Kim, Chang-Su;Lee, Dae-Su;No, Sam-Gyu;Gang, Cheol;Gi, Cheol-Sik;Kim, Jin-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.243-243
    • /
    • 2010
  • Low-temperature grown (LTG) InGaAs epilayers were grown by MBE technique for studying a correlation between terahertz (THz) emission and the intrinsic defects. The 1.2-um-thick Be-compensated LTG-InGaAs epilayers were prepared on SI-InP:Fe substrate at $200-250^{\circ}C$, and subsequently in-situ annealed under As environment at $550^{\circ}C$ for 5-30 minutes. The carrier concentration/mobility and the crystalline structure were analyzed by the Hall effect and the x-ray diffraction (XRD), respectively, and the carrier lifetime were determined by the fs time-resolved pump-probe spectroscopy. THz generation from LTG-InGaAs was carried out by a Ti-sapphire laser (800 nm) of a pulse width of 190 fs at a repetition of 76 MHz. Figure shows the spectral amplitude of generated waves in the THz region. As the growth temperature of epilayer increases, the amplitude is enhanced. However, two samples grown at $200^{\circ}C$, as-grown and annealed, show almost no difference in the spectral amplitude. This suggests that the growth temperature is critical in the formation of defect states involved in THz emission. We are now investigating the correlations between the XRD band attributed to defects, the Hall parameter, and the spectral amplitude of generated THz wave.

  • PDF

Analysis of Propagation Environments for Indoor Wireless Communication Systems at THz Frequencies (THz 실내 무선 통신시스템을 위한 전파환경 분석)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • Short-range wireless communication systems are expanding at rapid rate, finding application in offices and homes. Development of wireless local network is accompanied by steady increase in the demand for ever higher data rates. This in turn entails the necessity to develop communication systems which operate at higher frequencies. It can be expected that short-rage wireless communication networks will soon push towards the THz frequency range. We use a 3D ray-launching for analysis of propagation environments at the indoor fixtures. We extended the approach from the modeling of the reflectivity of optically thick, smooth building materials at THz frequencies to materials with a rough surface. The simulation result of propagation environment is similar to average received power of reference paper. The RMS delay spread was calculated to be 9.11 ns in a room size of $6m(L){\times}5m(W){\times}2.5m(H)$ for the concrete plaster.

Channel Model and Wireless Link Performance Analysis for Short-Range Wireless Communication Applications in the Terahertz Frequency (테라헤르츠 대역 주파수에서 근거리 무선 통신 응용을 위한 채널 모델 및 무선 링크 성능 분석)

  • Chung, Tae-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.868-882
    • /
    • 2009
  • In this paper, channel model and wireless link performance analysis for the short-range wireless communication system applications in the terahertz frequency which is currently interested in many countries will be described. In order to realize high data rates above 10 Gbps, the more wide bandwidths will be required than the currently available bandwidths of millimeter-wave frequencies, therefore, the carrier frequencies will be pushed to THz range to obtain larger bandwidths. From the THz atmospheric propagation characteristics based on ITU-R P.676-7, the available bandwidths were calculated to be 68, 48 and 45 GHz at the center frequencies of 220, 300 and 350 GHz, respectively. With these larger bandwidths, it was shown from the simulation that higher data rate above 10 Gbps can be achieved using lower order modulation schemes which have spectral efficiency of below 1. The indoor propagation delay spread characteristics were analyzed using a simplified PDP model with respect to building materials. The RMS delay spread was calculated to be 9.23 ns in a room size of $6\;m(L){\times}5\;m(W){\times}2.5\;m(H)$ for the concrete plaster with TE polarization, which is a similar result of below 10 ns from the Ray-Tracing simulation in the reference paper. The indoor wireless link performance analysis results showed that receiver sensitivity was $-56{\sim}-46\;dBm$ over bandwidth of $5{\sim}50\;GHz$ and antenna gain was calculated to be $26.6{\sim}31.6\;dBi$ at link distance of 10m under the BPSK modulation scheme. The maximum achievable data rates were estimated to be 30, 16 and 12 Gbps at the carrier frequencies of 220, 300 and 350 GHz, respectively, under the A WGN and LOS conditions, where it was assumed that the output power of the transmitter is -15 dBm and link distance of 1 m with BER of $10^{-12}$. If the output power of transmitter is increased, the more higher data rate can be achieved than the above results.