• Title/Summary/Keyword: Terahertz spectroscopy

Search Result 72, Processing Time 0.025 seconds

Software-based Simple Lock-in Amplifier and Built-in Sound Card for Compact and Cost-effective Terahertz Time-domain Spectroscopy System

  • Yu-Jin Nam;Jisoo Kyoung
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.683-691
    • /
    • 2023
  • A typical terahertz time-domain spectroscopy system requires large, expensive, and heavy hardware such as a lock-in amplifier and a function generator. In this study, we replaced the lock-in amplifier and the function generator with a single sound card built into a typical desktop computer to significantly reduce the system size, weight, and cost. The sound card serves two purposes: 1 kHz chopping signal generation and raw data acquisition. A unique software lock-in (Python coding program to eliminate noise from raw data) method was developed and successfully extracted THz time-domain signals with a signal-to-noise ratio of ~40,000 (the intensity ratio between the peak and average noise levels). The built-in sound card with the software lock-in method exhibited sufficiently good performance compared with the hardware-based method.

Characterization of the Stress-optic Properties of Ceramics by Terahertz Time-domain Spectroscopy

  • Zhi Qiang Wang;Wen Jia Ren;Gui Ying Zhang;Zhi Yong Wang
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.225-229
    • /
    • 2024
  • This paper introduces a rapid measurement technique for the stress-optic coefficient, using terahertz time-domain spectroscopy. First we propose a design combining a four-point bending device with a scanning stage to streamline the loading process. Then we detail the measurement principle and outline the signal-processing algorithm. The experiments are carried out on Al2O3, a representative ceramic material. The experimental data reveal that the refractive index of Al2O3 exhibits a linear decrease with increasing stress. This work supplies an efficient method for stress measurement rooted in the stress-optic effect.

A Study on the Photo-Degradation Properties of the Spiropyran Using THz-TDS (테라헤르츠 시간 영역 분광법을 이용한 스피로파이란의 광 퇴화 특성 연구)

  • Bang, Jin-Hyuk;Park, Myoung-Hwan;Ryu, Han-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • The spiropyran is a typical material having photodegradation properties in the process of photochromism. The spiropyran has been utilized in various applications such as optical switch, optical memories, and biosensor because of its remarkable stability, fast responsive time, stronger color change, and photo-induced controllability. However, the spriropyran is photodegraded by the repetitive optical irradiation. The photodegradation of spiropyran have been investigated by using UV-Visible spectroscopy, nuclear magnetic resonance (NMR), and Raman spectroscopy. Herein, the properties of spiropyran were characterized by using terahertz time-domain spectroscopy (THz-TDS) in the terahertz frequency region. In terahertz region, the measured absorbance of spiropyran was increased due to the photodegradation induced by the repetitive UV irradiation. The absorbance tendency of spiropyran in the terahertz frequency region was compared with that in the visible region, and they were completely opposite to each other.

Terahertz time domain spectroscopy of GdBCO superconducting thin films

  • Ji, Gangseon;Park, Woongkyu;Lee, Hyoung-Taek;Song, Chang-Yun;Seo, Choongwon;Park, Minjo;Kang, Byeongwon;Kim, Kyungwan;Kim, Dai-Sik;Park, Hyeong-Ryeol
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.15-17
    • /
    • 2019
  • We present terahertz optical properties of $GdBa_2Cu_3O_{7-x}$ (GdBCO) superconducting thin films. GdBCO films with a thickness of about 105 nm were grown on a $LaAlO_3$ (LAO) single crystal substrate using a conventional pulsed laser deposition (PLD) technique. Using an Ar ion milling system, the thickness of the GdBCO film was reduced to 58 nm, and its surface was also smoothened. Terahertz (THz) transmission spectra through two different GdBCO films are measured over the range between 0.2 and 1.5 THz using THz time domain spectroscopy. Interestingly, the THz transmission of the thinner GdBCO film has been increased to six times larger than that of the thicker one, while the thinner film is still maintaining its superconducting property at below 90 K.

Application of terahertz spectroscopy/imaging technology for food quality and safety management (식품의 품질 및 안전 관리를 위한 테라헤르츠 분광/영상 기술의 응용)

  • Lee, Sang Yoo;Woo, So Young;Chun, Hyang Sook
    • Food Science and Industry
    • /
    • v.51 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Terahertz (THz) represents the portion of the electromagnetic radiation between the microwave and the infrared region and is within the frequency range of 0.1-10 THz. The ability of THz waves to pass through a wide variety of packaging materials, combined with their ability to characterize the molecular structure of many substances makes it an attractive tool for the application of food quality and safety management. This review provides current information on application of THz spectroscopy/imaging technology for food quality and safety management. The THz spectroscopy/imaging technology has been shown to be useful for detecting foreign bodies, vitamin/moisture, pesticides, antibiotics, melamine etc. However, major barriers to the adoption of THz spectroscopy/imaging for food quality and safety management include THz signal loss in heterogeneous food matrices, high costs of sources and detectors, and absence of a library for the wide group of food compounds. Further research is needed to overcome these barriers.

High-Speed High-Resolution Terahertz Time-Domain Spectrometer (고속 고분해 테라헤르츠 시간영역 분광기)

  • Kim, Young-Chan;Kim, Ki-Bok;Yee, Dae-Su;Yi, Min-Woo;Ahn, Jae-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.370-375
    • /
    • 2008
  • High-speed high-resolution terahertz time-domain spectroscopy (THz-TDS) is demonstrated using the asynchronous-opticalsampling (AOS) method. A time-domain signal with a 10-ns time window is rapidly acquired by using two femtosecond lasers with slightly different repetition frequencies to generate and detect a terahertz pulse wave, without a mechanical delay stage. The spectrum obtained by the fast Fourier transformation (FFT) of the time-domain waveform has a frequency resolution of 100 MHz. The time resolution of our spectrometer is measured using the cross-correlation method to be 278 fs. A transmission spectrum of water vapor is measured and the absorption lines are analyzed in the frequency range from 0.1 to 1.2 THz.

NDE Inspecting Techniques for Wind Turbine Blades Using Terahertz Waves (테라헤르츠파를 이용한 풍력터빈 블레이드 NDE 탐상 평가기법)

  • Im, Kwang-Hee;Kim, Sun-Kyu;Jung, Jong-An;Cho, Young-Tae;Woo, Yong-Deuck
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • Terahertz waves (T-ray) was extensively studied for the NDE (nondestructive evaluation) of characterization of trailing edges for a use of turbines composed with composite materials. The used NDE system were consisted of both CW(Continuous wave) and TDS (Time domain spectroscopy). The FRP composites were utilized for two kinds of both trailing edges of wind energy (non-conducting polymeric composites) and carbon fiber composites with conducting properties. The signals of T-ray in the TDS (Time domain spectroscopy) mode resembles almost that of ultrasound waves; however, a terahertz pulse could not penetrate a material with conductivity unlike ultrasound. Also, a method was suggested to obtain the "n" in the materials, which is called the refractive index (n). The data of refractive index (n) could be solved for the trailing edges. The trailing edges were scanned for characterization and inspection. C-scan and B-scan images were obtained and best optimal NDE techniques were suggested for complicated geometry samples by terahertz radiation. Especially, it is found that the defect image of T-ray corresponded with defect locations for the trailing edges of wind mill.

Evaluation and Application of T-Ray Nondestructive Characterization of FRP Composite Materials (FRP 복합재료의 T-Ray 비파괴특성 평가 및 적용)

  • Im, Kwang-Hee;Hsu, David K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • Recently, (terahertz ray) applications have emerged as one of the most promising new powerful nondestructive evaluation (NDE) techniques. In this study, a new T-ray time-domain spectroscopy system was utilized for detecting and evaluating layup effect and flaw in FRP composite laminates. Extensive experimental measurements in reflection and thru-transmission modes were made to map out the T-ray images. Especially this was demonstrated in thick GFRP laminates containing double saw slots. In carbon composites the penetration of terahertz waves is limited to some degree and the detection of flaws is strongly affected by the angle between the electric field(E-field) vector of the terahertz waves and the intervening fiber directions. The artificial defects investigated by terahertz waves were bonded foreign material, simulated disbond and delamination and mechanical impact damage. The effectiveness and limitations of terahertz radiation for the NDE of composites are discussed.

Modeling of THz Frequency Spectrum via Optical Rectification in THz Time Domain Spectroscopy (테라헤르츠 시간 영역 분광의 광정류시 발생하는 테라헤르츠 스펙트럼 모델링)

  • Lee, Kang-Hee;Yi, Min-Woo;Ahn, Jea-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • In recent years, gradually increasing interest has been directed to the use of terahertz technology in nondestructive testing and non-invasive measurements, and terahertz time domain spectroscopy (THz-TDS) has become a key technology in such applications. This paper deals with the terahertz pulse generation from cadmium telluride via optical rectification process of femto-second infrared laser pulses. The measured terahertz spectrum is compared with the result of model calculation based on space-time domain nonlinear Maxwell equations for coherent frequency mixing process. The propagation process of terahertz and infra-red pulses in the material as well as the surface interference and free space diffraction effects are also considered. The experimental results are in good agreements with the calculated spectrum.