Browse > Article
http://dx.doi.org/10.9714/psac.2019.21.1.015

Terahertz time domain spectroscopy of GdBCO superconducting thin films  

Ji, Gangseon (Department of Physics, Chungbuk National University)
Park, Woongkyu (Department of Physics and Astronomy and Center for Atom Scale Electromagnetism, Seoul National University)
Lee, Hyoung-Taek (Department of Physics, Chungbuk National University)
Song, Chang-Yun (Department of Physics, Chungbuk National University)
Seo, Choongwon (Department of Physics, Chungbuk National University)
Park, Minjo (Department of Physics, Chungbuk National University)
Kang, Byeongwon (Department of Physics, Chungbuk National University)
Kim, Kyungwan (Department of Physics, Chungbuk National University)
Kim, Dai-Sik (Department of Physics and Astronomy and Center for Atom Scale Electromagnetism, Seoul National University)
Park, Hyeong-Ryeol (Department of Physics, Chungbuk National University)
Publication Information
Progress in Superconductivity and Cryogenics / v.21, no.1, 2019 , pp. 15-17 More about this Journal
Abstract
We present terahertz optical properties of $GdBa_2Cu_3O_{7-x}$ (GdBCO) superconducting thin films. GdBCO films with a thickness of about 105 nm were grown on a $LaAlO_3$ (LAO) single crystal substrate using a conventional pulsed laser deposition (PLD) technique. Using an Ar ion milling system, the thickness of the GdBCO film was reduced to 58 nm, and its surface was also smoothened. Terahertz (THz) transmission spectra through two different GdBCO films are measured over the range between 0.2 and 1.5 THz using THz time domain spectroscopy. Interestingly, the THz transmission of the thinner GdBCO film has been increased to six times larger than that of the thicker one, while the thinner film is still maintaining its superconducting property at below 90 K.
Keywords
terahertz time domain spectroscopy; GdBCO; Ar-ion milling; Pulsed laser deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett., vol. 99, pp. 147401, 2007.   DOI
2 H. T. Chen, H. Yang, R. Singh, J. F. O'Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, "Tuning the resonance in high-temperature superconducting terahertz metamaterials," Phys. Rev. Lett., vol. 105, pp. 247402, 2010.   DOI
3 J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, "Tuning of superconducting niobium nitride terahertz metamaterials," Opt. Express, vol. 19, pp. 12021, 2011.   DOI
4 N. I. Zheludev and Y. S. Kivshar, "From metamaterials to metadevices," Nat. Mater., vol. 11, pp. 917, 2012.   DOI
5 V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. de Groot, and N. I. Zheludev, "Modulating sub-THz radiation with current in superconducting metamaterial," Phys. Rev. Lett., vol. 109, pp. 243904, 2012.   DOI
6 R. Singh and N. Zheludev, "MATERIALS Superconductor photonics," Nat. Photonics, vol. 8, pp. 679, 2014.   DOI
7 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, pp. 667, 1998.   DOI
8 H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B, vol. 58, pp. 6779, 1998.   DOI
9 W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824, 2003.   DOI
10 F. Wang and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett., vol. 97, pp. 206806, 2006.   DOI
11 D. Y. Wang, Z. Tian, C. H. Zhang, X. Q. Jia, B. B. Jin, J. Q. Gu, J. G. Han, and W. L. Zhang, "Terahertz superconducting metamaterials for magnetic tunability," J. Opt., vol. 16, pp. 094013, 2014.   DOI
12 H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, "Colossal Absorption of Molecules Inside Single Terahertz Nanoantennas," Nano Lett., vol. 13, pp. 1782, 2013.   DOI
13 W. Hu, S. Kaiser, D. Nicoletti, C. R. Hunt, I. Gierz, M. C. Hoffmann, M. Le Tacon, T. Loew, B. Keimer, and A. Cavalleri, "Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling," Nat. Mater., vol. 13, pp. 705, 2014.   DOI
14 J. Keller, G. Scalari, F. Appugliese, E. Mavrona, S. Rajabali, M. J. Suess, M. Beck, and J. Faist, "High T-c Superconducting THz Metamaterial for Ultrastrong Coupling in a Magnetic Field," ACS Photonics, vol. 5, pp. 3977, 2018.   DOI
15 D. Grischkowsky, S. Keiding, M. Vanexter, and C. Fattinger, "Far-Infrared Time-Domain Spectroscopy with Terahertz Beams of Dielectrics and Semiconductors," J. Opt. Soc. Am. B, vol. 7, pp. 2006, 1990.   DOI
16 M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics, vol. 3, pp. 152, 2009.   DOI
17 H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, "Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance," Appl. Phys. Lett., vol. 96, pp. 121106, 2010.   DOI
18 J. Jeong, D. Kim, H. R. Park, T. Kang, D. Lee, S. Kim, Y. M. Bahk, and D. S. Kim, "Anomalous extinction in index-matched terahertz nanogaps," Nanophotonics, vol. 7, pp. 347, 2018.   DOI
19 M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, "Active Terahertz Nanoantennas Based on VO2 Phase Transition," Nano Lett., vol. 10, pp. 2064, 2010.   DOI
20 Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, "A Vanadium Dioxide Metamaterial Disengaged from Insulator-toMetal Transition," Nano Lett., vol. 15, pp. 6318, 2015.   DOI