DOI QR코드

DOI QR Code

Characterization of the Stress-optic Properties of Ceramics by Terahertz Time-domain Spectroscopy

  • Zhi Qiang Wang (Department of Computer Science and Technology, School of Information Technology and Engineering, Tianjin University of Technology and Education) ;
  • Wen Jia Ren (Department of Computer Science and Technology, School of Information Technology and Engineering, Tianjin University of Technology and Education) ;
  • Gui Ying Zhang (Department of Microelectronics, School of Electronic Information Engineering, Tianjin University of Technology and Education) ;
  • Zhi Yong Wang (Department of Mechanics, School of Mechanical Engineering, Tianjin University)
  • Received : 2024.02.20
  • Accepted : 2024.04.05
  • Published : 2024.06.25

Abstract

This paper introduces a rapid measurement technique for the stress-optic coefficient, using terahertz time-domain spectroscopy. First we propose a design combining a four-point bending device with a scanning stage to streamline the loading process. Then we detail the measurement principle and outline the signal-processing algorithm. The experiments are carried out on Al2O3, a representative ceramic material. The experimental data reveal that the refractive index of Al2O3 exhibits a linear decrease with increasing stress. This work supplies an efficient method for stress measurement rooted in the stress-optic effect.

Keywords

Acknowledgement

The Tianjin Education Commission Research Program Project of China [grant number 2022KJ118]; the Research Program Project of Tianjin University of Technology and Education [grant number KYQD1625 and KYQD14014].

References

  1. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007). https://doi.org/10.1038/nphoton.2007.3
  2. B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Mater. 1, 26-33 (2002). https://doi.org/10.1038/nmat708
  3. M. Koch, D. M. Mittleman, J. Ornik, and E. Castro-Camus, "Terahertz time-domain spectroscopy," Nat. Rev. Methods Primers 3, 48 (2023).
  4. L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, "Defect-induced Fano resonances in corrugated plasmonic metamaterials," Adv. Opt. Mater. 5, 1600960 (2017).
  5. L. Chen, D.-G. Liao, X.-G. Guo, J.-Y. Zhao, Y.-M. Zhu, and S.-L. Zhuang, "Terahertz time-domain spectroscopy and micro-cavity components for probing samples: A review," Front. Inform. Technol. Electron. Eng. 20, 591-607 (2019). https://doi.org/10.1631/FITEE.1800633
  6. M. Mikerov, R. Shrestha, P. van Dommelen, D. M. Mittleman, and M. Koch, "Analysis of ancient ceramics using terahertz imaging and photogrammetry," Opt. Express 28, 22255-22263 (2020). https://doi.org/10.1364/OE.399336
  7. D. Ye, W. Wang, H. Zhou, H. Fang, J. Huang, Y. Li, H. Gong, and Z. Li, "Characterization of thermal barrier coatings microstructural features using terahertz spectroscopy," Surf. Coat. Technol. 394, 125836 (2020).
  8. M. Ma, Y. Wang, M. Navarro-Cia, F. Liu, F. Zhang, Z. Liu, Y. Li, S. M. Hanham, and Z. Hao, "The dielectric properties of some ceramic substrate materials at terahertz frequencies," J. Eur. Ceram. Soc. 39, 4424-4428 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.06.012
  9. S. Kamba, D. Nuzhnyy, M. Savinov, J. Sebek, J. Petzelt, J. Prokleska, R. Haumont, and J. Kreisel, "Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics," Phys. Rev. B 75, 024403 (2007).
  10. M. Pfleger, H. Roitner, H. Puhringer, K. Wiesauer, H. Grun, and S. Katletz, "Advanced birefringence measurements in standard terahertz time-domain spectroscopy," Appl. Opt. 53, 3183-3190 (2014). https://doi.org/10.1364/AO.53.003183
  11. X. Zhang, J. Chen, and Z. Zhou, "THz time-domain spectroscopy technology," Laser Optoelectron P. 7, 35-38 (2005).
  12. S. Zhong, "Progress in terahertz nondestructive testing: A review," Front. Mech. Eng. 14, 273-281 (2019). https://doi.org/10.1007/s11465-018-0495-9
  13. T. Fukuchi, N. Fuse, M. Okada, T. Fujii, M. Mizuno, and K. Fukunaga, "Measurement of refractive index and thickness of topcoat of thermal barrier coating by reflection measurement of terahertz waves," Electron. Commun. Jpn. 96, 37-45 (2013).
  14. M. Watanabe, S. Kuroda, H. Yamawaki, and M. Shiwa, "Terahertz dielectric properties of plasma-sprayed thermal-barrier coatings," Surf. Coat. Technol. 205, 4620-4626 (2011). https://doi.org/10.1016/j.surfcoat.2011.03.144
  15. W. Zhao, S. Wang, L. Li, D. Liu, C. Li, and Z. Wang, "Characterizing the thermally grown oxide in thermal barrier coating by terahertz time domain spectroscopy," Coatings 13, 376 (2023).
  16. C. C. Chen, D.-J. Lee, T. Pollock, and J. F. Whitaker, "Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings," Opt. Express 18, 3477-3486 (2010). https://doi.org/10.1364/OE.18.003477
  17. B. Cao, M. Wang, X. Li, M. Fan, and G. Tian, "Noncontact thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology," IEEE Sens. J. 20, 3162-3171 (2020). https://doi.org/10.1109/JSEN.2019.2958674
  18. Z. Wang, K. Kang, S. Wang, L. Li, N. Xu, J. Han, M. He, L. Wu, and W. Zhang, "Determination of plane stress state using terahertz time-domain spectroscopy," Sci. Rep. 6, 36308 (2016).
  19. K. Kang, S. Wang, L. an Li, Z. Wang, and C. Li, "Terahertz-elasticity for single crystal silicon," Opt. Laser Eng. 137, 106396 (2021).
  20. L. Wang, K. Kang, X. Sun, S. Wang, L. Li, C. Li, and Z. Wang, "Measurement of the three-dimensional distribution of uniaxial stress by terahertz time domain spectroscopy," Opt. Express 31, 555-563 (2023). https://doi.org/10.1364/OE.475939
  21. K. Kang, Y. Du, S. Wang, L. an Li, Z. Wang, and C. Li, "Full-field stress measuring method based on terahertz time-domain spectroscopy," Opt. Express 29, 40205-40213 (2021). https://doi.org/10.1364/OE.435386
  22. D. Liu, Z. Zhen, Y. Du, K. Kang, H. Zhao, C. Li, and Z. Wang, "Super-resolution stress imaging for terahertz-elastic based on SRCNN," Opt. Photonics J. 12, 253-268 (2022). https://doi.org/10.4236/opj.2022.1211019
  23. I. Pupeza, R. Wilk, and M. Koch, "Highly accurate optical material parameter determination with THz time-domain spectroscopy," Opt. Express 15, 4335-4350 (2007). https://doi.org/10.1364/OE.15.004335
  24. S. Ebara, Y. Hirota, M. Tani, and M. Hangyo, "Highly sensitive birefringence measurement in THz frequency region and its application to stress measurement," in Proc. Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics (Cardiff, UK, Sep. 2-9, 2007), pp. 651-652.
  25. W. Song, L. Li, Z. Wang, S. Wang, M. He, J. Han, L. Cong, and Y. Deng, "Experimental verification of the uniaxial stress-optic law in the terahertz frequency regime," Opt. Laser Eng. 52, 174-177 (2014). https://doi.org/10.1016/j.optlaseng.2013.06.014
  26. P. Schemmel, G. Diederich, and A. J. Moore, "Direct stress optic coefficients for YTZP ceramic and PTFE at GHz frequencies," Opt. Express 24, 8110-8119 (2016). https://doi.org/10.1364/OE.24.008110
  27. P. Schemmel, G. Diederich, and A. J. Moore, "Measurement of direct strain optic coefficient of YSZ thermal barrier coatings at GHz frequencies," Opt. Express 25, 19968-19980 (2017). https://doi.org/10.1364/OE.25.019968
  28. Z. Wang, Y. Zhang, N. Lu, Z. Wang, and W. Qiu, "Measurement of stress optic coefficient for thermal barrier coating based on terahertz time-domain spectrum," Coatings 11, 1265 (2021).