• Title/Summary/Keyword: Terahertz(THz)

Search Result 147, Processing Time 0.024 seconds

Single-mode Condition and Dispersion of Terahertz Photonic Crystal Fiber

  • Kim, Soan;Kee, Chul-Sik;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.97-100
    • /
    • 2007
  • We have investigated properties of a plastic photonic crystal fiber guiding terahertz radiations, THz photonic crystal fiber. The single-mode condition and dispersion of a plastic triangular THz photonic crystal fiber are investigated by using the plane wave expansion method and the beam propagation method. The THz photonic crystal fiber can perform as a single-mode fiber below 2.5 THz when the ratio of diameter (d) and period (${\Lambda}$) of air holes is less than 0.475. The THz photonic crystal fiber with ${\Lambda}=500{\mu}m$ and $d/{\Lambda}=0.4$ shows almost zero flattened dispersion behavior, $-0.03{\pm}0.02 ps/THz{\cdot}cm$, in the THz frequency range from 0.8 to 2.0 THz.

Broad Dual-band Metamaterial Filter with Sharp Out-of-band Rejections

  • Qi, Limei;Shah, Syed Mohsin Ali
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.629-634
    • /
    • 2018
  • A broad dual-band terahertz metamaterial filter with sharp out-of-band rejections is designed and demonstrated. The center frequencies of the first and the second bands occur at 0.35 THz and 0.96 THz with 3 dB relative bandwidth of 31% and 17%, respectively. Results are measured using a THz time-domain spectroscopy system that shows agreement with simulations. Physical mechanisms of the broad dual-band resonance are clarified based on transmissions of different structures and surface current density distributions. Influence of structure parameters on the transmission characteristics are discussed. Symmetry of the structure ensures the filter polarization independence at normal incidence. These results supported by the design of the filter could find applications in broad multi-band sensors, terahertz communication systems, and other emerging terahertz technologies.

Terahertz Non-destructive Testing Technology for Industrial Applications (산업용 테라헤르츠 비파괴 검사 기술)

  • Lee, E.S.;Moon, K.;Lee, I.M.;Park, D.W.;Choi, D.H.;Shin, J.H.;Kim, H.S.;Choi, D.H.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.3
    • /
    • pp.59-69
    • /
    • 2018
  • Terahertz (THz) imaging and spectroscopy have been developed as non-destructive testing methods for various industrial applications. However, they have not been widely adopted in real applications owing to a high system price and the large size of conventional THz time-domain spectroscopy systems, which are based on ultrashort optical pulse lasers. Recently, various types of compact THz emitters and detectors have become available. As a result, THz non-destructive test (NDT) systems have become viable solutions. Herein, we briefly review the recent advances in THz NDT techniques adopting continuous-wave THz systems, including our recent results of a THz-based waterproof test system and an electrical connection inspection system for car manufacturing.

The Electrical and Optical Characteristics of Silica Sand by Terahertz Electromagnetic Pulses (테라헤르츠 전자기 펄스를 이용한 이산화규소의 전기적 광학적 특성)

  • 전태인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.202-206
    • /
    • 2001
  • Using THz time-domain spectroscopy (THz-TDS), the power absorption, the index of refraction, and the real conductivity of silica sand are measured from 0.1[Thz] to 0.5[Thz] frequency range. It is impossible to measure the characterization of the silica sand by simple electrical measurements using mechanical contacts, e.g., Hall effect or four-point probe measurements. However, the THz-TDS technique can measure not only electrical but also optical characterization of he sample. Also this technique can measure frequency dependent results. Especially, the real conductivity was increased according to THz frequency. This is unusual material compare with metal and semiconductor materials; the measured real conductivity are not followed by the simple Drude theory.

  • PDF

Terahertz Spectral Characteristics of Electrolyte Solutions under Different Magnetic Fields

  • Shao, Siyu;Huang, Haiyun;Peng, Bo;Wang, Guoyang;Ye, Ping;Wang, Jiahui;Su, Bo;Cui, Hailin;Zhang, Cunlin
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.337-343
    • /
    • 2022
  • Microfluidic chips are new devices that can manipulate liquids at the micrometer level, and terahertz (THz) time-domain spectroscopy has good applicability in biochemical detection. The combination of these two technologies can shorten the distance between sample and THz wave, reduce THz wave absorption by water, and more effectively analyze the kinetics of biochemical reactions in aqueous solutions. This study investigates the effects of different external magnetic field intensities on the THz transmission characteristics of deionized water, CuSO4, CuCl2, (CH3COO)2Cu, Na2SO4, NaCl, and CH3COONa; the THz spectral intensity of the sample solutions decrease with increasing intensity of the applied magnetic field. Analysis shows that the magnetic field leads to a change in the dipole moment of water molecules in water and electrolyte solutions, which enhances not only the hydrogen-bond networking ability of water but also the hydration around ions in electrolyte solutions, increasing the number of hydrogen bonds. Increasing the intensity of this magnetic field further promotes the hydrogen-bond association between water molecules, weakening the THz transmission intensity of the solution.

Terahertz time domain spectroscopy of GdBCO superconducting thin films

  • Ji, Gangseon;Park, Woongkyu;Lee, Hyoung-Taek;Song, Chang-Yun;Seo, Choongwon;Park, Minjo;Kang, Byeongwon;Kim, Kyungwan;Kim, Dai-Sik;Park, Hyeong-Ryeol
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.15-17
    • /
    • 2019
  • We present terahertz optical properties of $GdBa_2Cu_3O_{7-x}$ (GdBCO) superconducting thin films. GdBCO films with a thickness of about 105 nm were grown on a $LaAlO_3$ (LAO) single crystal substrate using a conventional pulsed laser deposition (PLD) technique. Using an Ar ion milling system, the thickness of the GdBCO film was reduced to 58 nm, and its surface was also smoothened. Terahertz (THz) transmission spectra through two different GdBCO films are measured over the range between 0.2 and 1.5 THz using THz time domain spectroscopy. Interestingly, the THz transmission of the thinner GdBCO film has been increased to six times larger than that of the thicker one, while the thinner film is still maintaining its superconducting property at below 90 K.

Polymorphic Forms of Furosemide Characterized by THz Time Domain Spectroscopy

  • Ge, Min;Liu, Guifeng;Ma, Shihua;Wang, Wenfeng
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2265-2268
    • /
    • 2009
  • Terahertz time domain spectroscopy (THz-TDS) is applied in transmission to identify the five forms of modifications of furosemide and one commercial product from 0.3 THz to 1.6 THz at room temperature. The different absorption spectra of the different forms are sensitive to crystal structures. Density function theory (DFT) calculation was used to understand the vibrational modes of furosemide in the THz region. X-ray powder diffractometry (XRPD) was applied to confirm the different forms of modifications. The results demonstrate that THz-TDS is a potential analytical technique in investigating polymorphic forms in the pharmaceutical fields.

Terahertz Spectroscopy and Molecular Dynamics Simulation of Five Citrates

  • Siyu Qian;Bo Peng;Boyan Zhang;Jingyi Shu;Zhuang Peng;Bo Su;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.86-96
    • /
    • 2024
  • This research investigation employs a terahertz (THz) time-domain spectroscopy system to study the terahertz spectral characteristics of five different citrates in both solution and solid state. The citrates under examination are lithium citrate, monosodium citrate, disodium citrate, trisodium citrate, and potassium citrate. The results show that the THz absorption coefficients of the first four citrate solutions exhibit a decreasing trend with increasing concentration. However, the potassium citrate solution shows an opposite phenomenon. At the same time, the absorption coefficients of lithium citrate, trisodium citrate, and potassium citrate solutions are compared at the same concentration. The results indicate that the absorption coefficient of citrate solution increases in proportion to the increase of metal cation radius, which is explained from the perspective of the influence of metal cations on hydrogen bonds. In addition, we also study the absorption peaks of solid citrates, and characterize the formation mechanism of the absorption peaks by molecular dynamics simulations. This methodology can be further extended to the study of multitudinous salts, presenting theoretical foundations for the detection in food and medicine industries.

Investigation of Terahertz Generation from Bulk and Periodically Poled LiTaO3 Crystal with a Cherenkov Phase Matching Scheme

  • Li, Zhongyang;Bing, Pibin;Yuan, Sheng;Xu, Degang;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.297-302
    • /
    • 2015
  • Terahertz (THz) wave generation from bulk and periodically poled $LiTaO_3$ (PPLT) with a Cherenkov phase matching scheme is numerically investigated. It is shown that by using the crystal birefringence of bulk $LiTaO_3$ and a grating vector of PPLT, THz waves can be efficiently generated by difference frequency generation (DFG) with a Cherenkov phase matching scheme. The frequency tuning characteristics of the THz wave via varying wavelength of difference frequency waves, phase matching angle, poling period of PPLT and working temperature are theoretically analyzed. The parametric gain coefficient in the low-loss limit and the absorption coefficient of the THz wave during the DFG process in the vicinity of polariton resonances are numerically analyzed. A THz wave can be efficiently generated by utilizing the giant second order nonlinearities of $LiTaO_3$ in the vicinity of polariton resonances.

Quantitative Label-free Terahertz Sensing of Transdermal Nicotine Delivered to Human Skin

  • Lee, Gyuseok;Namkung, Ho;Do, Youngwoong;Lee, Soonsung;Kang, Hyeona;Kim, Jin-Woo;Han, Haewook
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.368-372
    • /
    • 2020
  • We report the terahertz time-domain spectroscopy (THz-TDS) of transdermal drug delivery in human skin. The time evolution of transdermal nicotine delivery in nicotine patches was assessed by detecting the transmission coefficient of sub-picosecond THz pulses and using a semi-analytic model based on the single-layer effective medium approximation. Using commercial nicotine patches (Nicoderm CQ®, 7 mg/24 h), THz transmission coefficients were measured to quantitatively analyze the cumulative amounts of nicotine released from the patches in the absence of their detailed specifications, including multilayer structures and optical properties at THz frequencies. The results agreed well with measurements by conventional in vitro and in vivo methods, using a diffusion cell with high-performance liquid chromatography and blood sampling respectively. Our study revealed the ability of the THz-TDS method to be an effective alternative to existing methods for noninvasive and label-free assessments of transdermal drug delivery, showing its high promise for biomedical, pharmaceutical, and cosmetic applications.