Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.3.297

Investigation of Terahertz Generation from Bulk and Periodically Poled LiTaO3 Crystal with a Cherenkov Phase Matching Scheme  

Li, Zhongyang (North China University of Water Resources and Electric Power)
Bing, Pibin (North China University of Water Resources and Electric Power)
Yuan, Sheng (North China University of Water Resources and Electric Power)
Xu, Degang (College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University)
Yao, Jianquan (College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University)
Publication Information
Journal of the Optical Society of Korea / v.19, no.3, 2015 , pp. 297-302 More about this Journal
Abstract
Terahertz (THz) wave generation from bulk and periodically poled $LiTaO_3$ (PPLT) with a Cherenkov phase matching scheme is numerically investigated. It is shown that by using the crystal birefringence of bulk $LiTaO_3$ and a grating vector of PPLT, THz waves can be efficiently generated by difference frequency generation (DFG) with a Cherenkov phase matching scheme. The frequency tuning characteristics of the THz wave via varying wavelength of difference frequency waves, phase matching angle, poling period of PPLT and working temperature are theoretically analyzed. The parametric gain coefficient in the low-loss limit and the absorption coefficient of the THz wave during the DFG process in the vicinity of polariton resonances are numerically analyzed. A THz wave can be efficiently generated by utilizing the giant second order nonlinearities of $LiTaO_3$ in the vicinity of polariton resonances.
Keywords
Terahertz wave; Difference frequency generation; Cherenkov phase matching;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. J. Ding, "Efficient generation of high-frequency terahertz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry," Opt. Lett. 35, 262-264 (2010).   DOI   ScienceOn
2 Y. H. Avetisyan, "Terahertz-wave surface-emitted differencefrequency generation without quasi-phase-matching technique," Opt. Lett. 35, 2508-2510 (2010).   DOI   ScienceOn
3 R. Chen, G. Sun, G. Xu, Y. J. Ding, and I. B. Zotova, "Generation of high-frequency terahertz waves in periodically poled $LiNbO_{3}$ based on backward parametric interaction," Appl. Phys. Lett. 101, 111101 (2012).   DOI   ScienceOn
4 O. Eknoyan, H. F. Taylor, W. Matous, T. Ottinger, and R. R. Neugaonkar, "Comparison of photorefractive damage effects in $LiNbO_3$, $LiTaO_3$, and $Ba_{1-x}Sr_{x}TiyNb_{2-y}O_6$ optical waveguides at 488 nm wavelength," Appl. Phys. Lett. 71, 3051-3053 (1997).   DOI   ScienceOn
5 D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, USA, 2005).
6 S. S. Sussman, "Tunable light scattering from transverse optical modes in lithium niobate," Report of Microwave Lab, Stanford University, No. 1851, 22-34 (1970).
7 A. S. Barker, Jr., A. A. Ballman, and J. A. Ditzenberger, "Infrared study of the lattice vibrations in $LiTaO_3$," Phys. Rev. B 2, 4233-4239 (1970).   DOI
8 I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, "Linera and nonlinear optical properities of $MgO:LiTaO_3$," Appl. Phys. B 96, 423-432 (2009).
9 K. Saito, T. Tanabe, and Y. Oyama, "Widely tunable surfaceemitted monochromatic terahertz-wave generation beyond the Reststrahlen band," Opt. Commun. 335, 99-101 (2015).   DOI   ScienceOn
10 L. Ho, M. Pepper, and P. Taday, "Terahertz spectroscopy: Signatures and fingerprints," Nat. Photon. 2, 541-543 (2008).   DOI
11 Y. Kim, K. H. Jin, J. C. Ye, J. Ahn, and D. Yee, "Wavelet power spectrum estimation for high-resolution terahertz time-domain spectroscopy," J. Opt. Soc. Korea 15, 103-108 (2011).   DOI   ScienceOn
12 P. Zhao, S. Ragam, Y. J. Ding, I. B. Zotova, X. Mu, H. Lee, S. K. Meissner, and H. Meissner, "Singly resonant optical parametric oscillator based on adhesive-free-bonded periodically inverted $KTiOPO_4$ plates: terahertz generation by mixing a pair of idler waves," Opt. Lett. 37, 1283-1285 (2012).   DOI
13 J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, "Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases," Nat. Photonics 4, 627-631 (2010).   DOI
14 T. Kleine-Ostmann and T. Nagatsuma, "A review on terahertz communications research," J. Infrared Millim. Te. Waves 32, 143-171 (2011).   DOI
15 W. Shi and Y. J. Ding, "A monochromatic and high-power THz source tunable in the ranges of 2.7-38.4 um and 58.2-3540 um for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).   DOI   ScienceOn
16 K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, "Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium nobate crystal," Opt. Express 17, 7102-7109 (2009).   DOI
17 K. Takeya, K. Suizu, and K. Kawase, "THz generation using Cherenkov phase matching," Terahertz Science and Technology 5, 78-86 (2012).
18 T. Akiba, Y. Akimoto, K. Suizu, K. Miyamoto, and T. Omatsu, "Evaluation of polarized terahertz waves generated by Cherenkov phase matching," Appl. Opt. 53, 1518-1522 (2014).   DOI
19 K. Suizu, T. Akiba, N. Kaneko, H. Uchida, K. Miyamoto, and T. Omatsu, "Cherenkov phase-matched terahertz wave generation and its spectroscopic applications," Proc. SPIE 8909, 890910 (2013).