• Title/Summary/Keyword: Tensor analysis

Search Result 272, Processing Time 0.033 seconds

Food recognition service using HSV data preprocessing function (데이터 전처리 기능을 활용한 음식 사진 인식 서비스 설계 및 구현)

  • Kim, Hakkyeom;Yoo, Yeonjoon;Shin, Daehyun;Oh, Juhyeon;Lee, Jin-a;Kim, Youngwoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1215-1218
    • /
    • 2021
  • 한국을 방문하는 외국인들은 매년 증가하고 있고 방한 목적 중 식도락관광이 3위에 오를 만큼 세계에서 한국 음식은 위상이 높아지고 있다. 하지만, 한국에서의 알레르기 성분 표시는 법적 의무가 아니기 때문에 대부분의 한식당에서는 이를 표시하지 않고 있고 알레르기가 있는 외국인 관광객들은 한국 음식 섭취에 있어서 상당한 위험과 불편함을 부담하고 있다. 이에 본 논문에서는 머신러닝을 활용하여 사진 촬영만으로 쉽고 정확하게 알레르기 성분을 제공하고자 사물 이미지 데이터 전처리를 위한 HSV(Hue, Saturation, Value) 데이터 전처리 기법을 제안한다. 제안하는 기법은 이미지의 HSV의 평균 및 분산, 표준편차를 통해 불필요한 데이터를 제거한다. 성능평가에서는 비빔밥, 불고기, 제육볶음 등 사진 약 500장의 데이터 셋을 구성하여 HSV의 평균 및 분산을 통해 이미지를 제거하는 방식으로 구축한 데이터 셋을 TensorFlow를 통해 정확도와 학습시간을 측정한다. 측정결과, 제안하는 기법으로 구축한 데이터 셋은 최소 15%에서 최대 25% 높은 정확도와 최소 37.96%에서 최대 42.85% 높은 정도 낮은 학습시간을 보여주었다. 향후 HSV를 활용한 데이터 전처리 기법은 더 많은 데이터를 통해 더욱 구체적인 성능 분석이 필요하다. 또한, 실질적인 개발 및 구현을 통해 제안하는 데이터 전처리 기법의 더욱 현실적인 검증이 필요하다.

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

Viscoelastic Property of the Brain Assessed With Magnetic Resonance Elastography and Its Association With Glymphatic System in Neurologically Normal Individuals

  • Bio Joo;So Yeon Won;Ralph Sinkus;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.564-573
    • /
    • 2023
  • Objective: To investigate the feasibility of assessing the viscoelastic properties of the brain using magnetic resonance elastography (MRE) and a novel MRE transducer to determine the relationship between the viscoelastic properties and glymphatic function in neurologically normal individuals. Materials and Methods: This prospective study included 47 neurologically normal individuals aged 23-74 years (male-to-female ratio, 21:26). The MRE was acquired using a gravitational transducer based on a rotational eccentric mass as the driving system. The magnitude of the complex shear modulus |G*| and the phase angle 𝛗 were measured in the centrum semiovale area. To evaluate glymphatic function, the Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) method was utilized and the ALPS index was calculated. Univariable and multivariable (variables with P < 0.2 from the univariable analysis) linear regression analyses were performed for |G*| and 𝛗 and included sex, age, normalized white matter hyperintensity (WMH) volume, brain parenchymal volume, and ALPS index as covariates. Results: In the univariable analysis for |G*|, age (P = 0.005), brain parenchymal volume (P = 0.152), normalized WMH volume (P = 0.011), and ALPS index (P = 0.005) were identified as candidates with P < 0.2. In the multivariable analysis, only the ALPS index was independently associated with |G*|, showing a positive relationship (β = 0.300, P = 0.029). For 𝛗, normalized WMH volume (P = 0.128) and ALPS index (P = 0.015) were identified as candidates for multivariable analysis, and only the ALPS index was independently associated with 𝛗 (β = 0.057, P = 0.039). Conclusion: Brain MRE using a gravitational transducer is feasible in neurologically normal individuals over a wide age range. The significant correlation between the viscoelastic properties of the brain and glymphatic function suggests that a more organized or preserved microenvironment of the brain parenchyma is associated with a more unimpeded glymphatic fluid flow.

Recent results on the analysis of viscoelastic constitutive equations

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • Recent results obtained for the port-pom model and the constitutive equations with time-strain separability are examined. The time-strain separability in viscoelastic systems Is not a rule derived from fundamental principles but merely a hypothesis based on experimental phenomena, stress relaxation at long times. The violation of separability in the short-time response just after a step strain is also well understood (Archer, 1999). In constitutive modeling, time-strain separability has been extensively employed because of its theoretical simplicity and practical convenience. Here we present a simple analysis that verifies this hypothesis inevitably incurs mathematical inconsistency in the viewpoint of stability. Employing an asymptotic analysis, we show that both differential and integral constitutive equations based on time-strain separability are either Hadamard-type unstable or dissipative unstable. The conclusion drawn in this study is shown to be applicable to the Doi-Edwards model (with independent alignment approximation). Hence, the Hadamardtype instability of the Doi-Edwards model results from the time-strain separability in its formulation, and its remedy may lie in the transition mechanism from Rouse to reptational relaxation supposed by Doi and Edwards. Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the port-pom equations have been derived in the integral/differential form and also in the simplifled differential type by McLeish and carson on the basis of the reptation dynamics with simplifled branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, and the integral model seems stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However cautious attention has to be paid when one employs the simplified version of the constitutive equations without arm withdrawal, since neglecting the arm withdrawal immediately yields Hadamard instability. In the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms.

Analysis of Characteristics of Seismic Source and Response Spectrum of Ground Motions from Recent Earthquake near the Backryoung Island (최근 백령도해역 발생지진의 지진원 및 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.274-281
    • /
    • 2011
  • We analysed ground motions form Mw 4.3 earthquake around Backryoung Island for the seismic source focal mechanism and horizontal response spectrum. Focal mechanism of the Backryoung Islands area was compared to existing principal stress orientation of the Korean Peninsula and horizontal response spectrum was also compared to those of the US NRC Regulatory Guide (1.60) and the Korean National Building Code. The ground motions of 3 stations, including vertical, radial, and tangential components for each station, were used for grid search method of moment tensor seismic source. The principal stress orientation from this study, ENE-WSW, is consistent fairly well with that of the Korean Peninsula. The horizontal response spectrum using 30 observed ground motions analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). Response spectrum of 30 horizontal ground motions were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that the horizontal response spectrum revealed higher values for frequency bands above 3 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed higher values for the frequency bands below 0.8 second than the Korean Standard Response Spectrum (SD soil condition). However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the higher frequency bands.

Effects of Hip Internal Rotation on Knee Extensor and Hip Abductor Electromyographic Activity During Stair Up and Down (계단 오르고 내리기시 엉덩관절 내회전이 무릎관절 폄근과 엉덩관절 벌림근 근활성도에 미치는 영향)

  • Oh, Jae-Seap;Kwan, Oh-Yun;Yi, Chung-Hwi;Jean, Hye-Sean
    • Physical Therapy Korea
    • /
    • v.15 no.2
    • /
    • pp.54-63
    • /
    • 2008
  • The purpose of this study was to examine the effect of the hip internal rotation on knee extensor and hip abductor electromyographic (EMG) activity during stair up and stair down mobility. Eighteen healthy subjects were recruited. All subjects performed stair up and down movements on a step of 30cm height while maintaining the hip in neutral (condition 1) and hip in internal rotation (condition 2). Surface EMG activity was recorded from five muscles (gluteus maximus, vastus lateralis (VL), vastus medialis oblique (VMO), posterior gluteus medius (Gmed), and tensor fascia latae (TFU)) and hip internal rotation angle was measured using a three dimensional motion analysis system The time period for stair up and down was normalized using the MatLab 6.5 program, and EMG activity was normalized to the value of maximal voluntary isometric contraction (%MVIC). The EMG activities according to the hip rotation (neutral or internal rotation) during the entire time period of stair up and down in each phase were compared using a paired t-test. During the entire period of stair up, the EMG activities of VL and TFL in condition 2 were significantly greater than in condition 1 (p<.05). During the entire period of stair down, the EMG activities of VL and TFL in condition 2 were significantly greater than in condition 1 (p<.05). However, the EMG activities of the other muscles were not significantly different between the conditions (p>.05). These results suggest that the stair up and down maintaining hip internal rotation was could be a contributing factor on patellar lateral tracking.

  • PDF

Implementation of Specific Target Detection and Tracking Technique using Re-identification Technology based on public Multi-CCTV (공공 다중CCTV 기반에서 재식별 기술을 활용한 특정대상 탐지 및 추적기법 구현)

  • Hwang, Joo-Sung;Nguyen, Thanh Hai;Kang, Soo-Kyung;Kim, Young-Kyu;Kim, Joo-Yong;Chung, Myoung-Sug;Lee, Jooyeoun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.49-57
    • /
    • 2022
  • The government is making great efforts to prevent crimes such as missing children by using public CCTVs. However, there is a shortage of operating manpower, weakening of concentration due to long-term concentration, and difficulty in tracking. In addition, applying real-time object search, re-identification, and tracking through a deep learning algorithm showed a phenomenon of increased parameters and insufficient memory for speed reduction due to complex network analysis. In this paper, we designed the network to improve speed and save memory through the application of Yolo v4, which can recognize real-time objects, and the application of Batch and TensorRT technology. In this thesis, based on the research on these advanced algorithms, OSNet re-ranking and K-reciprocal nearest neighbor for re-identification, Jaccard distance dissimilarity measurement algorithm for correlation, etc. are developed and used in the solution of CCTV national safety identification and tracking system. As a result, we propose a solution that can track objects by recognizing and re-identification objects in real-time within situation of a Korean public multi-CCTV environment through a set of algorithm combinations.

Comparative analysis of deep learning performance for Python and C# using Keras (Keras를 이용한 Python과 C#의 딥러닝 성능 비교 분석)

  • Lee, Sung-jin;Moon, Sang-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.360-363
    • /
    • 2022
  • According to the 2018 Kaggle ML & DS Survey, among the proportions of frameworks for machine learning and data science, TensorFlow and Keras each account for 41.82%. It was found to be 34.09%, and in the case of development programming, it is confirmed that about 82% use Python. A significant number of machine learning and deep learning structures utilize the Keras framework and Python, but in the case of Python, distribution and execution are limited to the Python script environment due to the script language, so it is judged that it is difficult to operate in various environments. This paper implemented a machine learning and deep learning system using C# and Keras running in Visual Studio 2019. Using the Mnist dataset, 100 tests were performed in Python 3.8,2 and C# .NET 5.0 environments, and the minimum time for Python was 1.86 seconds, the maximum time was 2.38 seconds, and the average time was 1.98 seconds. Time 1.78 seconds, maximum time 2.11 seconds, average time 1.85 seconds, total time 37.02 seconds. As a result of the experiment, the performance of C# improved by about 6% compared to Python, and it is expected that the utilization will be high because executable files can be extracted.

  • PDF

Elastic Wave Propagation in Monoclinic System Due to Harmonic Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.47-52
    • /
    • 1998
  • An analysis of dynamic responses is carried out on monoclinic anisotropic system due to a buried harmonic line source. The load is in the form of a normal stress acting along an arbitrary axis on the plane of symmetry within the orthotropic materials: In case that the line load is acting along the symmetry axis normal to the plane of symmetry, plane wave equation is coupled with verital shear wave and longitudinal wave. However, if the line load is acting along an arbitrary axis normal to the plane of symmetry, plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in a reference coordinate system, where the line load is coincident with a symmetry axis of the orthotropic material. Then the equation of motion is transformed into one with respect to general coordinate system with azimuthal angle by using transformation tensor. Plane wave solutions of monoclinic systems are derived for infinite media. Finally complete solutions for the plane harmonic wave are obtained by calculating the inverse of the integral transforms, in which bulk wave poles are avoided by deforming the contour of the integration to the complex plane. Numerical results for examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

Multi-scale simulation of drying process for porous materials using molecular dynamics (part 1 : homogenization method) (분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(1부 : 균질화법 해석))

  • 오진원;백성민;금영탁
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.115-122
    • /
    • 2004
  • When porous materials are dried, the particles flocculate into fish-net structure in gel phase. In order to exactly analyze the stress distribution of porous materials during drying process, the elastic tensor of microscopic gel structures has to be predicted considering pore shapes as well as porosities of porous materials. The elastic characteristics of porous materials associated with porosities were predicted analyzing microscopic gel structures with circular and cross pores via homogenization method and the drying processes of the electric porous ceramic insulator were simulated using finite element method (FEM). Comparing analysis results between consideration and negligence of pores, the deformed shape and distributions of temperature and moisture were similar but the residual stress was significantly different.