• Title/Summary/Keyword: Tensioned Beam

Search Result 71, Processing Time 0.025 seconds

Stiffness Reduction Factor for Post-Tensioned Flat Plate Slabs under Lateral Loads (횡하중하의 포스트 텐션 플랫 플레이트 해석을 위한 강성감소계수)

  • Park, Young-Mi;Park, Jin-Ah;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.661-668
    • /
    • 2009
  • Effective beam width model(EBWM) has been used for analysis of post-tensioned(PT) flat plate slab frames under lateral loads. The accuracy of this model in predicting lateral drifts and unbalanced moments strongly depends on the estimated effective stiffness of PT flat plate slabs. As moments on the slab due to lateral loads increases, cracks occur which leads to stiffness reduction in slabs. For analyzing PT flat plate slab structure under lateral loads with good precision, reduction in slab stiffness has to be accurately estimated for EBWM. For this purpose, this study collected test results of PT flat plate system conducted by former researches. And this study reduced the width of slab so that the stiffness of the EBWM converged into the lateral stiffness of each test specimens by trial and error. By conducting nonlinear regression analysis using the stiffness ratio of the reduced width of slab to the effective width of EBWM with respect to the level of slab moments, an equation for calculating stiffness reduction factor for slab is proposed. For verifying the accuracy of the proposed equation, this study compared with the test result of the PT flat plate frame. It is shown that the EBWM with the proposed equation predicts the actual stiffness of the PT specimen which varied according to the level of applied moment.

Dynamic Analysis of Catenary System Subjected to Moving Load (이동하중을 받는 일정장력이 작용하는 가선계의 동적해석)

  • Lee, Kyu-Ho;Cho, Yong-Hyun;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.99-106
    • /
    • 2011
  • In this study, the dynamic contact of a catenary system is analyzed by using the finite element method. We derive the equations of motion for the catenary system by taking into consideration tension on the catenaries. After establishing the weak form, they are spatially discretized with beam elements. Then, we analytically calculated the wave propagation speed for a string, bar, beam, and the catenaries subjected to tension. Further, finite element computer program for contact dynamic analyses is developed. Finally, we analyze the wave propagation response corresponding to the moving load to the contact line are calculated.

Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon

  • Bonopera, Marco;Chang, Kuo-Chun;Lin, Tzu-Kang;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The influence of prestress force on the fundamental frequency and static deflection shape of uncracked Prestressed Concrete (PC) beams with a parabolic bonded tendon was examined in this paper. Due to the conflicts among existing theories, the analytical solutions for properly considering the dynamic and static behavior of these members is not straightforward. A series of experiments were conducted for a total period of approximately 2.5 months on a PC beam made with high strength concrete, subsequently and closely to the 28 days of age of concrete. Specifically, the simply supported PC member was short term subjected to free transverse vibration and three-point bending tests during its early-age. Subsequently, the experimental data were compared with a model that describes the dynamic behavior of PC girders as a combination of two substructures interconnected, i.e., a compressed Euler-Bernoulli beam and a tensioned parabolic cable. It was established that the fundamental frequency of uncracked PC beams with a parabolic bonded tendon is sensitive to the variation of the initial elastic modulus of concrete in the early-age curing. Furthermore, the small variation in experimental frequency with time makes doubtful its use in inverse problem identifications. Conversely, the relationship between prestress force and static deflection shape is well described by the magnification factor formula of the "compression-softening" theory by assuming the variation of the chord elastic modulus of concrete with time.

Study on the Shear Strengthening of Concrete Beams with Wire Rope Clamped by Bolts (볼트 체결된 와이어 로프를 이용한 RC 보의 전단보강에 대한 연구)

  • Kim, Sun-Young;Song, Jin-Gyu;Lee, Young-Uk;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.283-290
    • /
    • 2006
  • The paper describes m experimental study on the shear strengthening of concrete beams with exposed wire rope. The strengthening method is using the mechanical bolting of wire rope tensioned on the exterior of beam section. There are two shear strengthening types. The first is closed type wrapped beam section with wire rope like as closed stirrup. The second is U type tensioned at the anchor located in the side of beam section. The main parameters of specimens are strengthening spacings of wire rope with 150, 200, and 250mm for the closed and U type respectively. The shear span ratio of specimens applied by 3-point loading is 4. The results showed that the ultimate shear strength and ductility of strengthened beams increased significantly compared with non-strengthened beams. Especially, the strengthening effect of closed type was very preferable to U type. Therefore, the shear strengthening method with wire rope is very reasonable in view of repair and rehabilitation of beams.

Removable shear connector for steel-concrete composite bridges

  • Suwaed, Ahmed S.H.;Karavasilis, Theodore L.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.107-123
    • /
    • 2018
  • The conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast construction tolerances, and allows rapid bridge disassembly to drastically reduce the time needed to replace any deteriorating structural component (e.g., the bridge deck). A series of 11 push-out tests highlight why the novel structural details of the FBSC result in superior shear load-slip displacement behavior compared to welded shear studs. The paper also quantifies the effects of bolt diameter and bolt preload and presents a design equation to predict the shear resistance of the FBSC.

Behavior of simple precast high-strength concrete beams connected in the maximum bending moment zone using steel extended endplate connections

  • Magdy I. Salama;Jong Wan Hu;Ahmed Almaadawy;Ahmed Hamoda;Basem O. Rageh;Galal Elsamak
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.627-641
    • /
    • 2024
  • This paper presents an experimental and numerical study to investigate the behavior of the precast segmental concrete beams (PSCBs) utilizing high-strength concrete (HSC) connected in the zone of the maximum bending moment using steel extended endplate connections (EECs). The experimental study consisted of five beams as follows: The first beam was the control beam for comparison, which was an unconnected one-piece beam made of HSC. The other four other beams consisted of two identical pieces of precast concrete. An important point to be noted is that at the end of each piece, a steel plate was used with a thickness of 10 mm. Moreover, this steel plate was welded to the lower and upper reinforcing bars of the beam. Furthermore, the steel plate was made to connect the two pieces using the technique of EECs. Several variables were taken in these four beams, whether from the shape of the connection or enhancing the behavior of the connection using the post-tensioning technique. EECs without stiffeners were used for some of the tested beams. The behavior of these connections was improved using stiffeners and shear bolts. To get accurate results, a comparison was made between the behaviors of the five beams. Another important point to be noted is that Abaqus and SAP2000 programs were used to investigate the behavior of PSCBs and to ensure the accuracy of the modeling process which showed a good agreement with the experimental results. Additionally, the simplified modeling using SAP2000 was able to model the nonlinear behavior of PSCBs connected using steel EECs. It was found that the steel pre-tensioned bolted EECs, reinforced with steel stiffeners and shear anchors, could be used to connect the precast HSC segmental beams via the internal pre-stressing technique.

Experimental Analysis of Prestressed Approach Slab Behavior (프리스트레스가 도입된 접속슬래브의 실험적 거동 분석)

  • Park, Hee-Beom;Eum, In-Sub;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-164
    • /
    • 2010
  • This research was conducted to analyze the behavior of Single-PTAS (Single Post-Tensioned Approach Slab) under tensioning and environmental loads by performing field tests when the demonstration Single-PTAS was being constructed. The temperature measurement sensors were installed at different depths, and the displacements in the approach slab under environmental loads and tensioning were measured using displacement transducers. As an experimental result, an abrupt change in the longitudinal displacement due to tensioning was not observed. The daily temperature change in the approach slab was negligible where the depth is over about 35cm. The temperature gradient in the approach slab adjacent to bridge was smaller than that adjacent to pavement. The patterns and magnitudes of vertical displacements were directly related to the temperature gradient at the measuring location. The behavior of Single-PTAS was very similar to that of concrete pavement. Therefore, a new design methodology for approach slabs is needed to include the pavement concept and to overcome drawback of current design procedures based on the simple beam concept.

Efficiency of stiffening plates in fabricated concrete-filled tubes under monotonic compression

  • Albareda-Valls, Albert;Carreras, Jordi Maristany
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1023-1044
    • /
    • 2015
  • Concrete-filled tubes (CFT), formed by an outer steel tube filled with plain or reinforced concrete inside, have been increasingly used these recent decades as columns or beam-columns, especially for tall buildings in seismic areas due to their excellent structural response. This improved behavior is derived from the effect of confinement provided by the tube, since the compressive strength of concrete increases when being subjected to hydrostatic pressure. In circular CFTs under compression, the whole tube is uniformly tensioned due to the radial expansion of concrete. Contrarily, in rectangular and square-shaped CFTs, the lateral flanges become subjected to in-plane bending derived from this volumetric expansion, and this fact implies a reduction of the confinement effect of the core. This study presents a numerical analysis of different configurations of CFT stub columns with inner stiffening plates, limited to the study of the influence of these plates on the compressive behavior without eccentricity. The final purpose is to evaluate the efficiency in terms of strength and ductility of introducing stiffeners into circular and square CFT sections under large deformation axial loading.

A simplified analysis of the behavior of suspension bridges under live load

  • Stavridis, Leonidas T.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.559-576
    • /
    • 2008
  • Having established the initial geometry and cable force of a typical three span suspension bridge under permanent load, the additional maximum response of the cable and the stiffening girder due to live load are determined, by means of an analytic procedure, considering the girder first hinged at its ends and then continuous through the main towers. The problem of interaction between the cable and the stiffening girder is examined taking under due consideration the second order effects, whereby, through the analogy to a fictitious tensioned beam under transverse load, a closed -form solution is achieved by means of a simple quadratic equation. It is found that the behavior of the whole system is governed by five simple dimensionless parameters which enable a quick determination of all the relevant design magnitudes of the bridge. Moreover, by introducing these parameters, a set of diagrams is presented, which enable the estimation of the influence of the geometric and loading data on the response and permit its immediate evaluation for preliminary design purposes.

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.