• Title/Summary/Keyword: Tension and deflection

Search Result 179, Processing Time 0.023 seconds

A Study on the Service Load State Behavior of Reinforced Concrete Plate Member

  • Bhang, Jee-Hwan;Kang, Won-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.55-72
    • /
    • 2000
  • This paper proposes a mechanical model to describe the load-deformation responses of the reinforced concrete plate members under service load state. An Analytical method is introduced on the basis of the rotating crack model which considers equilibrium, compatibility conditions, load-strain relationship of cracked member, and constitutive law for materials. The tension stiffening effect in reinforced concrete structures is taken into account by the average tensile stress-strain relationship from the load-strain relationship for the cracked member and the constitutive law for material. The strain compatibility is used to find out the crack direction because the crack direction is an unknown variable in the equilibrium and compatibility conditions. The proposed theory is verified by the numerous experimental data such as the crack direction, moment-steel strain relationship, moment-crack width relationship. The present paper can provide some basis for the provision of the definition of serviceability for plate structures of which reinforcements are deviated from the principal stresses, because the present code defines the serviceability by the deflection, crack control, vibration and fatigue basically for the skeletal members. The proposed theory is applicable to predict the service load state behavior of a variety of reinforced concrete plate structures such as skew slab bridges, the deck of skew girder bridges.

  • PDF

An Effect of the Behavior of Steel Plate Girder bridge with Applying External Post-Tensioning Method (외부후긴장 보강공법이 판형교의 거동에 미치는 영향)

  • Min, Rak-Ki;Sung, Deok-Yong;Kim, Eun-Kyun;Lee, Hee-Up;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.514-521
    • /
    • 2006
  • In strengthening structure, the external post-tensioning method which secure clearness in the structure analysis process is adopted to bridge as well as architecture structure. Therefore, the major objective of this study is to investigate the effects and application of external post-tensioning method for steel plate girder bridge. It analyzed the mechanical behaviors of steel plate girder bridge with applying external post-tensioning on the finite element analysis and laboratory test for the dynamic characteristics. As a result, the reinforcement of steel plate girder bridge the external post-tensioning method are obviously effective for the response which is non-reinforced. The analytical and experimental study are carried out to investigate the post-tension force decrease stress and deflection on steel plate girder bridge for serviceability. It is investigated that the change degree of natural frequency is very low with applying the external post-tensioning method. The servicing steel plate girder bridge with external post-tensioning is the reasonable reinforcement measures which could be secured the stability of dynamic behavior and increase a dropped durability.

  • PDF

Polyvinyl-alcohol fiber-reinforced concrete with coarse aggregate in beam elements

  • Leonardo M. Massone;Jaime Reveco;Alejandro Arenas;Fabian Rojas
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.113-131
    • /
    • 2023
  • The use of fibers has been commonly considered in engineered cementitious composites, but their behavior with coarse aggregate in concrete has not been studied significantly, which is needed to meet structural performance objectives for design, such as ductility. This research analyzes the behavior of fiber-reinforced concrete with coarse aggregate with 0.62%, 1.23%, and 2% PVA (Polyvinyl-alcohol) content, varying the maximum aggregate size. Tensile (direct and indirect) and compressive concrete tests were performed. The PVA fiber addition in coarse aggregate concrete increased the ductility in compression, especially for the fiber with a larger aspect ratio, with a minor impact on strength. In addition, the tensile tests showed that the PVA fiber increased the tensile strength of concrete with coarse aggregate and, more significantly, improved the ductility. A selected mixture was used to build short and slender reinforced concrete beams to assess the behavior of structural members. PVA fiber addition in short beams changed the failure mode from shear to flexure, increasing the deflection capacity. On the other hand, the slender beam tests revealed negligible impact with the use of PVA.

A Study on the Behavior of Wall-Support Joint of Steel Plate-Concrete Structure (SC(강판-콘크리트)구조 브라켓 접합부 거동에 관한 연구)

  • Kim, Woo Bum;Kim, Kang Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.377-385
    • /
    • 2004
  • An experimental and analytical study on the behavior of the wall-support joint in SC(steel plate-concrete) structure was performed. Nine full-scale specimens were tested with a horizontal monotonic load, all acting in the same plane, causing a uni-axial moment on the SC structure's wall-support beam joint. The main focus is to examine thenonlinear behavior and ultimate strength of the SC wall-support joint. The effects of parameters, such aslocation of support, thickness of the steel plate, and size of support, were studied. The yield strength and ultimate strength of the plate-concrete wall was defined by examining the load-deflection relationship, showing the tension membrane action.

Inelastic analysis of concrete beams strengthened with various fiber reinforced polymer (FRP) systems

  • Terro, M.J.;El-Hawary, M.M.;Hamoush, S.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.177-188
    • /
    • 2005
  • This paper presents a numerical model developed to evaluate the load-deflection and moment-curvature relationship for concrete beams strengthened externally with four different Fiber Reinforced Polymer (FRP) composite systems. The developed model considers the inelastic behavior of concrete section subjected to a combined axial force and bending moment. The model accounts for tensile strength of concrete as defined by the modulus of rupture of concrete. Based on the adopted material constitutive relations, the model evaluates the sectional curvature as a function of the applied axial load and bending moment. Deflections along the beam are evaluated using a finite difference technique taking into account support conditions. The developed numerical technique has been tested on a cantilever beam with a transverse load applied at its end. A study of the behavior of the beam with tension reinforcement compared to that with FRP areas giving an equivalent ultimate moment has been carried out. Moreover, cracking of the section in the tensile region at ultimate load has also been considered. The results indicated that beams reinforced with FRP systems possess more ductility than those reinforced with steel. This ductility, however, can be tuned by increasing the area of FRP or by combining different FRP layers.

Stability analysis of bimodular pin-ended slender rod

  • Yao, Wenjuan;Ma, Jianwei;Hu, Baolin
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.563-581
    • /
    • 2011
  • Many novel materials, developed in recent years, have obvious properties with different modulus of elasticity in tension and compression. The ratio of their tensile modulus to compressive modulus is as high as five times. Nowadays, it has become a new trend to study the mechanical properties of these bimodular materials. At the present stage, there are extensive studies related to the strength analysis of bimodular structures, but the investigation of the buckling stability problem of bimodular rods seems to cover new ground. In this article, a semi-analytical method is proposed to acquire the buckling critical load of bimodular slender rod. By introducing non-dimensional parameters, the position of neutral axis of the bimodular rod in the critical state can be determined. Then by combining the phased integration method, the deflection differential equation of bimodular pin-ended slender rod is deduced. In addition, the buckling critical load is obtained by solving this equation. An example, which is conducted by comparing the calculation results between the three of the methods including the laboratory tests, numerical simulation method and the method we developed here, shows that the method proposed in the present work is reliable to use. Furthermore, the influence of bimodular characteristics on the stability is discussed and analyzed.

Development of Reinforced Wood Beams Using Polymer Mortar (폴리모 모르터를 이용한 강화목재보의 개발)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.79-86
    • /
    • 1990
  • Based on limited number of tests on reinforced wood beams using polymer mortar in this study, following conclusions were drawn ; 1.Reinforcing compression side of wood beam using polymer mortar was effective in reducing deflection. 2.By increasing thickness of polymer mortar, effective beam stiffness was improved, but energy absorption was reduced. 3.Polymer mortar reinforcement improved compressive strength and reduced strain in compression side of the beam. Therefore, it was possible to change the failure mode from by compression in control beam to by tension in composite beams. 4.The composite beams that have more than 2cm of polymer mortar layer did not perform well because a strain redistribution and separation of meterials at interface were induced in moment span. 5.To maximize the load carrying capacity of composite beam, it is necessary to make polymer mortar and wood behave together without failing at interface. To do this, it is needed to use a polymer mortar which has high strength with such elastic modulus that is closer to elastic modulus of wood. otherwise, it is recommended to use shear connectors at interface to prevent separation of materials under ultimate load.

  • PDF

An analytical study on behavior of the girder panel in simplified composite deck under construction loadings (가설하중 하에서 초간편 강합성 바닥판 거더패널의 거동에 관한 해석적 연구)

  • Han, Deuk-Cheon;Kim, Sang-Seup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1537-1542
    • /
    • 2007
  • In this study, based on a I-roll embedded steel composite deck, it is suggested a new type of simplified composite deck and analyzed under construction loading. Using ABAQUS, it's estimated effects of welding amount of steel plate and I-section, existence of a hole of I-section's flange, and a location of hole. For a reasonable verification of modeling, compare Euler-Beam theory with F.E.M models. In result, it is verified that change of welding amount increase more maximum bending tension stresses at the central part's section of span when elements are partial-welded. Also, verify that deflection is slightly increased when a hole existed compared with no hole.

  • PDF

An Experimental Verification of the Moment Redistribution in Continuous Reinforced Concrete Members Depending on Bond Condition of Reinforcement (철근의 부착상태에 따른 철근콘크리트 연속보에서의 모멘트재분배에 대한 실험적 검증)

  • Yoon, Hyeong-Jae;Lee, Seung-Bae;Kim, Sang-Sik;Kim, Kang-Su;Jang, Su-Yuon
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.23-33
    • /
    • 2008
  • The moment redistribution in continuous reinforced concrete beams is very feasible phenomenon, by which the efficiency and the economy in designing reinforced concrete members can be enhanced. However, to understand the structural behavior by moment redistribution phenomenon, it is desirable to verify its mechanism experimentally considering tension stiffening effect, the relationship of moment redistribution and beam deflection, crack pattern, and effective stiffness. Six reinforced concrete continuous beam specimens were fabricated, and each specimen had a dimension of 250 mm $\times$ 350 mm and 7,000 mm long. The location of de-bonding was taken as the primary test parameter to investigate tension stiffening effect. The moment redistribution ratio of the specimens was different depending on the position of de-bonding, and in particular no moment redistribution was observed when de-bonding exist at both ends, the maximum negative moment region and the maximum positive moment region.

Experimental Evaluation on Effective Moment of Inertia of Reinforced Concrete Simple Beams and Continuos Beams Considering Tension Stiffening Effect (인장증강효과를 고려한 철근콘크리트 단순보와 연속보의 유효 단면2차모멘트에 대한 실험적 검증)

  • Lee, Seung-Bae;Yoon, Hyeong-Jae;Kim, Kang-Su;Kim, Sang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.285-288
    • /
    • 2008
  • A model for the effective moment of inertia $I_{\epsilon}$ as expressed in Branson's equation, in which reduction of the flexural rigidity of RC beams due to cracking are aptly taken into accoun,t is presented. However, KCI Code isn`t considered tension stiffening as it is in debonding of reinforcing bar. Therefore, this equation need to set up suitable to our design Code. The experimental work consisted of casting and testing a total of 6 simply supported reinforced concrete beams and a total of 4 continuos reinforced concrete beams under two point concentrated loads. Main parameters are concrete strength, coverage, bond between concrete and reinforcing bars, are known as have an effect on deflection and tension stiffening. Every test beams had the same $250{\times}350$mm rectangular section, with a simply supported clear span of 4,400 mm and a continuos clear span of 6,500 mm. Comparison of the test results with values obtained using the KCI Code equation of the effective moment of inertia showed a noticeable difference.

  • PDF