• Title/Summary/Keyword: Tensile strength

Search Result 7,718, Processing Time 0.047 seconds

Effect of Antimicrobial Microperforated Film Packaging on Extending Shelf Life of Cluster-type Tomato (Lycopersicon esculentum Mill.) (천연 항균물질 미세천공필름 포장이 송이토마토의 품질에 미치는 영향)

  • Lee, Youn-Suk;Lee, Young-Eun;Lee, Jung-Soo;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.447-455
    • /
    • 2011
  • To investigate the effects of the improvement of postharvest quality on fresh tomato, antimicrobial microperforated (AMP) films were prepared and their antimicrobial abilities were observed. AMP films were made by coating different types of natural antimicrobial agents such as cinnamon, clove, and clary sage essential oils into microperforated (MP) films. Cinnamon essential oil of 10% (v/v) has proven to be very effective as inhibitor of the mold growth on tomato, compared to the clove and clary sage essential oils. Quality changes of fresh tomatoes packed using the natural AMP films (AMP10 and AMP30) and MP films (MP10 and MP30) during storage were evaluated. Total microbial growth, weight loss, firmness, lycopene content, and decay rate as the major quality parameters were monitored over 9 days at $15^{\circ}C$. The oxygen transmission rates and mechanical properties between the natural AMP and MP films were also compared. There was no significant difference in change of oxygen transmission rate, tensile strength and elongation between the AMP and MP films. For storage studies, the freshness of tomato packaged in AMP30 film was higher than that in OPP film (the control), MP10, MP30, and AMP10 films. Especially, AMP30 film exhibited high efficiency compared to the control for tomato decay during storage periods. Based on the results, the microperforation and antimicrobial properties of the packaged films may significantly affect the maintenance of an optimum gas composition within the package atmosphere for increasing the storage life and quality of produce. They were also effective on the inhibition of microbial growth by controlled release of antimicrobial agent at an appropriate rate from the package into the tomato. Natural antimicrobial agent coating microperforated films could use potential functional package as a method of extending the freshness of postharvest tomato for storage.

Analysis of the Physicochemical Properties and Antioxidative Activity of Napa Cabbage Pickle (저장기간 동안 배추 피클의 이화학적 특성 및 항산화 활성 분석)

  • Son, Hae-Reon;Oh, Sun-Kyung;Bae, Sang-Ok;Choi, Myeong-Rak
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1275-1281
    • /
    • 2016
  • The principal objective of this fundamental research was to analyze the physicochemical properties the and antioxidative activity of Napa cabbage pickle (NCP) for development of low-salt pickles. NCP-1 was a smaller than NCP at amount soy sauce (10%). The pH of NCP and NCP-1 were $4.51{\pm}0.15$, $4.85{\pm}0.08$ immediately after preparation. The pH of NCP and NCP-1 was reduced to $4.08{\pm}0.05$ and $4.31{\pm}0.12$ over time during 60 days of storage. The acidity of the NCP and NCP-1 immediately after preparation were 0.51% and 0.38% and increased to 0.67% and 0.56% after 60 days of storage. The salinity for the NCP ranged from 1.71-2.22% and NCP-1 ranged from 1.18-1.63%. The L value, which indicates the lightness, was the highest at day 0 and the lowest at 60 day. The tensile strength value of NCP was $10.9{\pm}0.05kgf/cm^2$ and NCP-1 in $11.84{\pm}0.11kgf/cm^2$ at day 0 and then significantly decreased with time in storage. The cutting force of NCP was $1004{\pm}7.12gf/cm^2$ and NCP-1 in $845{\pm}5.27gf/cm^2$ at day 0, which increased over time in storage. The overall acceptability of NCP was the highest at day 30, but the overall acceptability of NCP-1 was the highest at day 45. NCP-1 extracts at day 60 showed the highest antioxidant activity of 66.04%, whereas the NCP extract at day 0 showed the lowest antioxidant activity of 45.41%. These results showed that depending on the content of the seasoning pickle difference in the antioxidant activity. Thus, the best pickled Napa cabbage is determined by a smaller amount soy sauce in NCP-1, and the results could provide a basis for improving the availability and quality of Napa cabbage.

Microclimate and Crop Growth in the Greenhouses Covered with Spectrum Conversion Films using Different Phosphor Particle Sizes (광전환재 크기가 다른 광전환 필름 피복 온실 내 미기상 및 작물 생육)

  • Park, Kyoung Sub;Kwon, Joon Kook;Lee, Dong Kwon;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.111-117
    • /
    • 2016
  • The objective of this study was to analyze the microclimate and the growth of tomato and lettuce in the greenhouses covered with spectrum conversion films using different phosphor particles sizes. Two spectrum conversion films using phosphor particles larger than $10{\mu}m$ (Micro-film) and smaller than 500 nm (Nano-film) in radius, and poly-ethylene (PE) film were used in double-layered greenhouses as outer coverings. PE films were used as inner coverings in all the greenhouses. Thickness of the films for inner and outer coverings was 0.06 mm. Tensile strength, elongation, and tearing resistance of the Micro- and Nano-films were not different from those of the PE film. Transmittances at a wavelength of 300-1100 nm were a little higher at the Micro-film and lower at the Nano-film than that of the PE film, respectively. Air temperatures at the Micro- and Nano-films were over $2^{\circ}C$ higher than at the PE film, but no significant difference was observed between the two light conversion films. The soil temperature at the Nano-film was $1.5^{\circ}C$ and $3^{\circ}C$ higher than at the Micro- and PE films, respectively. The yields of tomato at the Micro- and Nano-films were 12% and 14% higher than at the PE film, but no significant difference was observed between the two spectrum conversion films. The total soluble solid showed no significant differences among all the films. The yields of lettuces at the Micro- and Nano-films were 27% and 59% higher than at the PE film. Hunter's red (a) value of the lettuce leaf was the highest at the Nano-film. In this experiment, tomatoes requiring high irradiation were better at the Nano film, while lettuce requiring low irradiation better at the Micro film.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Characteristics of Edible Films Based with Various Cultivars of Sweet Potato Starch (고구마 전분을 이용한 가식성 필름의 제조와 특성)

  • Lee, Jung-Ju;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.834-842
    • /
    • 2000
  • In order to investigate the characteristics of various sweet potato starches, gelatinization temperatures, solution viscosity of starch separated from two cultivars of the dry type sweet potatoes(Yulmi and Gunmi), one cultivar of moist type sweet potato(Jinmi), and one cultivar of purple colored variety(Jami) were compared, and properties of the edible films prepared with the starches were determined. Under a differential scanning colorimetry(DSC), initial temperatures for starch gelatinization of the dry type sweet potatoes (Yulmi and Gunmi) were higher than that of the moist type sweet potato (Jinmi), and that of Jami was close to those of the dry type ones. The sweet potato starch solutions tested by a cone and plate viscometer, showed peudoplastic characteristics. The moist type sweet potato was the most viscous followed by Jami, Yulmi, and Gunmi among the tested starch solutions. Total color difference of the edible films prepared with different cultivars of sweet potatoes showed appreciable differences between cultivars, caused by differences in Hunterb values. Water Vapor Permeability (WVP) of sweet potato starch films also showed significant differences between cultivars. Films prepared with the dry type sweet potato, Gunmi, showed the lowest WVP value of $0.83{\times}10^{-9}\;g\;{\cdot}\;m/m^{2}\;{\cdot}\;s\;{\cdot}\;Pa$, followed by Jami, Yulmi, and Jinmi. Water solubility of the films did not show any significant differences between cultivars. Tensile strength of the dry type sweet potato and Jami, which ranged 14.18-18.75 MPa, were higher than that of the moist type sweet potato, which was 4.66 MPa. Elongation values of the films, which were 5-6%, indicated that sweet potato starch films were not so elastic.

  • PDF

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

RELATIONSHIP BETWEEN ADOLESCENT INTERNET ADDICTION AND DEPRESSION, IMPULSIVITY, AND OBSESSIVE-COMPULSIVITY (청소년 인터넷 중독과 우울, 충동성, 강박성과의 연관성)

  • Lee Dae-Hwan;Choi Young-Min;Cho Soo-Churl;Lee Jung-Ho;Shin Min-Sup;Lee Dong-Woo;Kim Bong-Seog;Kim Boong-Nyun
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.17 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • Objective : The aims of this study were to explore the relations of internet addiction to depression, impulsivity, and obsessive-compulsivity in adolescents. Methods : 1410 high school students (male=611, female=799 : mean age=$16.2{\pm}0.7$) were included in this study. The questionnaire consisted of items on demographic characteristics and internet use pattern. We assessed the level of internet addiction using Young's internet addiction scale (IAS) Barratt impulsiveness scale (BIS) and Maudsley obsessive compulsive inventory (MOCI) were also self-rated. In this study, We defined upper 25% of IAS as 'addiction group' and lower 25% as 'non-addiction group'. Results : The results were as follows ; 1) Male students had significantly higher mean scores on Internet addiction scale than females and there was significantly higher rate of male students in addiction group. 2) The addiction group spent more time for internet use, especially for games than non-addiction group. 3) The addiction group showed significantly higher total scores on BDI, BIS, and MOCI than non-addiction group. 4) Significant associations have been found between the level of internet addiction and depression, impulsivity, and obsessive-compulsivity, respectively. Conclusion : Depression, impulsivity, and obsessive-compulsivity could be significant factors predicting internet addiction. Especially, direct effect of impulsivity could be the most significant to explain internet addiction. Adolescents with high impulsivity may be vulnerable to internet addiction.

  • PDF

Suppression of misfit dislocations in heavily boron-doped silicon layers for micro-machining (마이크로 머시닝을 위한 고농도로 붕소가 도핑된 실리콘 층의 부정합 전위의 억제)

  • 이호준;김하수;한철희;김충기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.96-113
    • /
    • 1996
  • It has been found that the misfit dislocations in heavily boron-doped layers originate from wafer edges. Moreover, the propagation of the misfit dislocation into a heavily boron-doped region can be suppressed by placing a surrounding undoped region. Using a surrounding undoped region the disloction-free heavily boron-deoped silicon membranes have been fabricated. The measured surface roughness, fracture strength, and residual tensile stress of the membrane are 20.angs. peak-to-peak, 1.39${\times}$10$^{10}$ and 2.7${\times}$10$^{9}$dyn/cm$^{2}$, while those of the conventional heavily boron-doped silicon membrane with high density of misfit dislocations are 500 peak-to-peak, 8.27${\times}$10$^{9}$ and 9.3${\times}$10$^{8}$dyn/cm$^{2}$ respectively. The differences between these two membranes are due to the misfit dislocations. Young's modulus has been extracted as 1.45${\times}$10$^{12}$dyn/cm$^{2}$ for both membranes. Also, the effective lattice constant of heavily boron-doped silicon, the in-plane lattice constant of the conventional membrane, and the density of misfit dislocation contained in the conventional membrane have been extracted as density of misfit dislocation contained in the conventional membrane have been extracted as density of misfit dislocation contained in the conventional membrane have been extracted as 5.424.angs. 5.426.angs. and 2.3${\times}$10$^{4}$/cm for the average boron concentration of 1.3${\times}$10$^{20}$/cm$^{-23}$ cm$^{3}$/atom. Without any buffer layers, a disloction-free lightly boron-doped epitaxial layer with good crsytalline quality has been directly grown on the dislocation-free heavily boron-doped silicon layer. X-ray diffraction analysis revealed that the epitaxial silicon has good crystallinity, similar to that grown on lightly doped silicon substrate. The leakage current of the n+/p gated diode fabricated in the epitaxial silicon has been measured to be 0.6nA/cm$^{2}$ at the reverse bias of 5V.

  • PDF

Controlling of Molecular Weight and Degree of Deacetylation of Chitosan and Its Characteristics in Film Formation (키토산 분자량과 탈아세틸화도 조절 및 이에 따른 필름 특성)

  • Hwang, Kwon-T.;Park, Hyun-J.;Jung, Soon-T.;Ham, Kyung-S.;Yoo, Yong-K.;Cho, Gun-S.
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.47-55
    • /
    • 1999
  • Applications of chitosan are related to molecular weight and degree of deacetylation(DOD) of chitosan completely. The molecular weight and DOD were greatly affected by the concentration of solution time and temperature. The degree of demineralization was not significantly different at $50^{\circ}C\;and\;70^{\circ}C$ after 30 minutes. Deproteinization decreased as process time increased. The nitrogen content was reached to 6.92% after 90 minute at $80^{\circ}C$, which is similar to theoretical nitrogen content of chitin. The DOD was 82.84% after 2 hours reaction and increased as the reaction time increased in the process. Viscosity and molecular weight are increased as recycling number of concentrated NaOH solution increased. Chemical, biological and physical properties of chitosan depend on the DOD and molecular size of the molecule. Tensile strength of the films from acetic acid solutions was between $28.9{\sim}33.6$ MPa and was generally higher than that of the films from lactic acid. Elongation of the films from lactic acid was between $97.0{\sim}109.7%$ and was generally higher than that of the films from the acetic acid. Water vapor permeability of the films prepared from lcetic acid solutions was between $1.9{\sim}2.3ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$ and was generally higher than that of the films from the acetic acid.

  • PDF

Historical Investigation on Development of Produce and Packages or Physical Analysis of Packaging's Materials of Cheese in Korea since 1967-2 (1967년 이후 한국(韓國)에서 치즈제품(製品)의 개발(開發)과 포장(包裝)의 변화(變化) 및 그 포장재(包裝材)의 생물학적(生物學的) 조사연구(調査硏究)-2)

  • Kim, Duck-Woong
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1999
  • Physical analysis of some composite films of outer packaging at process cheeses in Korea is as following. In comparison with four composite films, tensile strength is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;MD9.55kg/15mm,\;TD8.95kg/15mm>79.3{\mu}PET/PVDC/L-LDPE\;film\;MD5.37kg/15mm,\;TD5.01kg/15mm>96.9{\mu}PE/PVDC/PE\;film\;MD5.42kg/15mm,\;TD4.73kg/15mm>61.6{\mu}PVDC/PE/AL-vac/CPS\;film\;MD4.65kg/15mm,\;TD4.22kg/15mm$. Water vapor transmission is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;0.41g/m^2{\cdot}24hr>79.3{\mu}PET/PVDC/L-LDPE\;film\;3.77g/m^2{\cdot}24hr>96.9{\mu}PE/PVDC/PE\;film\;3.81g/m^2{\cdot}24hr>61.6{\mu}PVDC/PE/AL-vac/4.91g/m^2{\cdot}24hr$. Gas transmission $O_2:N_2:CO_2$ is $72.2{\mu}PET/PVDC/PE/AL-vac/PE\;film\;1.81:0.74:4.2cc/m^2{\cdot}24hr{\cdot}atm>79.3{\mu}PET/PVDC/L-LDPE\;film\;13.4:6.4:34.2cc/m^2{\cdot}24hr{\cdot}atm>96.9{\mu}PE/PVDC/PE\;film\;15.3:7.1:42.0cc/m^2{\cdot}24hr{\cdot}atm>61.6{\mu}PVDC/PE/AL-vac/CPS\;film\;25.3:12.5:59.3cc/m^2{\cdot}24hr{\cdot}atm$ each other. And for preservation this were sealed to filths $N_2,\;CO_2$ gas or defilling ai (vacuum type) in the packaging and reserved less than $10^{\circ}C$ at refrigerator.

  • PDF