DOI QR코드

DOI QR Code

Microclimate and Crop Growth in the Greenhouses Covered with Spectrum Conversion Films using Different Phosphor Particle Sizes

광전환재 크기가 다른 광전환 필름 피복 온실 내 미기상 및 작물 생육

  • Park, Kyoung Sub (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Kwon, Joon Kook (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Lee, Dong Kwon (Envio, Venture Center, Korea Institute of Energy Research Institute) ;
  • Son, Jung Eek (Department of Plant Science, Seoul National University)
  • 박경섭 (국립원예특작과학원 시설원예연구소) ;
  • 권준국 (국립원예특작과학원 시설원예연구소) ;
  • 이동권 ((주)엔비오) ;
  • 손정익 (서울대학교 식물생산과학부)
  • Received : 2016.05.20
  • Accepted : 2016.06.21
  • Published : 2016.06.30

Abstract

The objective of this study was to analyze the microclimate and the growth of tomato and lettuce in the greenhouses covered with spectrum conversion films using different phosphor particles sizes. Two spectrum conversion films using phosphor particles larger than $10{\mu}m$ (Micro-film) and smaller than 500 nm (Nano-film) in radius, and poly-ethylene (PE) film were used in double-layered greenhouses as outer coverings. PE films were used as inner coverings in all the greenhouses. Thickness of the films for inner and outer coverings was 0.06 mm. Tensile strength, elongation, and tearing resistance of the Micro- and Nano-films were not different from those of the PE film. Transmittances at a wavelength of 300-1100 nm were a little higher at the Micro-film and lower at the Nano-film than that of the PE film, respectively. Air temperatures at the Micro- and Nano-films were over $2^{\circ}C$ higher than at the PE film, but no significant difference was observed between the two light conversion films. The soil temperature at the Nano-film was $1.5^{\circ}C$ and $3^{\circ}C$ higher than at the Micro- and PE films, respectively. The yields of tomato at the Micro- and Nano-films were 12% and 14% higher than at the PE film, but no significant difference was observed between the two spectrum conversion films. The total soluble solid showed no significant differences among all the films. The yields of lettuces at the Micro- and Nano-films were 27% and 59% higher than at the PE film. Hunter's red (a) value of the lettuce leaf was the highest at the Nano-film. In this experiment, tomatoes requiring high irradiation were better at the Nano film, while lettuce requiring low irradiation better at the Micro film.

본 연구의 목적은 광전환재의 사이즈가 다른 광전환 필름을 피복한 온실에서, 실내 생육 환경, 토마토 및 상추의 생육과 품질을 분석하는 것이다. $10{\mu}m$ 이상의 광전환재를 이용한 광전환 필름(Micro 필름), 500nm 이하의 광전환재를 이용한 광전환 필름(Nano 필름)과 폴리에틸렌(PE) 필름을 2중 온실의 외피복재로 피복하였다. 내피복재는 0.06mm PE 필름을 사용하였고, 내피복재 및 외피복재의 두께는 모두 0.06mm로 동일하였다. 광전환 필름의 인장강도, 인열강도, 신장율은 PE 필름과 유사하였다. 투광률은 Nano 필름이 600-750nm 및 전체 투광률에서 PE 필름보다 높았으며, Micro 필름은 PE 필름보다 전체 투광률이 낮았다. 온실 내 기온은 Micro 및 Nano 필름 온실이 PE 필름 온실에 비하여 약 $2^{\circ}C$정도 높았고, 광전환 필름 온실 간의 유의적인 차이는 없었다. 지온은 Nano 필름 온실이 Micro 필름과 PE 온실에 비하여 각각 1.5, 3 정도 높았다. 토마토의 수량은 PE 필름 온실에 비해 Micro 및 Nano 필름 온실에서 각각 12%, 14% 정도 유의적으로 증가하였고, 당도 차이는 없었다. 그리고 광전환 필름 간의 유의적인 차이는 없었다. 상추의 수량은 Micro 필름 온실이 Nano 필름 및 PE 필름 온실에 비하여 각각 27%, 59% 높았다. Hunter의 적색 값 a는 Nano 필름 온실에서 가장 높았다. 토마토와 같이 높은 광을 요구하는 작물은 투광률이 좋은 Nano 필름이 적합하였고, 상추와 같이 낮은 광을 요구하는 작물은 상추는 Micro 필름이 적합하다고 판단되었다.

Keywords

References

  1. Baille, A., C. Kittas, and N. Katsoulas. 2001. Influence of whitening on greenhouse microclimate and crop energy partitioning. Agric. For. Meteol. 107:293-306. https://doi.org/10.1016/S0168-1923(01)00216-7
  2. Espi, E., A. Salmern, A. Fontecha, Y. Garcia and, and A. I. Real. 2006. Plastic films for agricultural applications. J. Plast. Film Sheet. 22:85-102. https://doi.org/10.1177/8756087906064220
  3. Gruda, N. 2005. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Critic Reviews in Plant Sci. 24: 227-247. https://doi.org/10.1080/07352680591008628
  4. Hemming, S., E.A. van Os, J. Hemming, and J.A. Dieleman. 2006. The effect of new developed fluorescent greenhouse films on the growth of fragaria x ananassa 'Elsanta'. Eur. J. Hortic. Sci. 71:145-154.
  5. Kwon, J.K., K.S. Park, H.G. Choi, S.Y. Lee, K. Bekhzod, and N.J. Kang. 2013. Growth and developmental characteristics of lettuce, tomato and melon grown under spectrum conversion greenhouse films. J. Agric. Life Sci. 47:57-63.
  6. KATS. 2010. Agricultural polyethylene film. https://standard. go.kr.
  7. Lamnatou, C. and D. Chemisana. 2013. Solar radiation manipulations and their role in greenhouse claddings: Fluorescent solar concentrators, photoselective and other materials. Renew. & Sust. Ener. Rev. 27:175-190. https://doi.org/10.1016/j.rser.2013.06.052
  8. Minich, A. S., I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitskiy, D. A. Filatov, and G. A. Ivlev. 2011. Vital activity of lactuca sativa and soil microorganisms under fluorescent films. Вестник ТГПУ (TSPU Bulletin). 110:74-84.
  9. Nicolas, C. 2013. Greenhouse technology and management. CABI publishing. p51-59.
  10. Nishimura, Y., Y. Fukumoto, H. Agura, and Y. Shimoi. 2009. Growth and developmental characteristics of vegetables grown under spectrum conversion film. Hortic. Environ. Biotechnol. 50:416-421.
  11. Nishimura, Y., E. Wada, Y. Fukumoto, H. Agura, and Y. Shimoi. 2012. The effect of spectrum conversion covering film on cucumber in soilless culture. Acta Hortic. 956:481-487.
  12. Novoplansky A., T. Sachs, D. Cohen, R. Bar, J. Bodenheimer, and R. Reisfeld. 1990. Increasing plant productivity by changing the solar spectrum. Sol. Ener. Mat. 21:17-23. https://doi.org/10.1016/0165-1633(90)90039-4
  13. Papaioannou, C., N. Katsoulas, P. Maletsika, A. Siomos, and C. Kittas. 2012. Effects of a UV-absorbing greenhouse covering film on tomato yield and quality. Span. J. Agric. Res. 10:959-966. https://doi.org/10.5424/sjar/2012104-2899
  14. Pearson, S., Wheldon A.E., and Hadley P. 1995. Radiation transmission and fluorescence of nine greenhouse cladding materials. J. Agri. Engin. Res. 62:61-70. https://doi.org/10.1006/jaer.1995.1063
  15. Schettini, E., G. Vox. 2010. Greenhouse plastic films capable of modifying the spectral distribution of solar radiation. J. Agric. Eng. - Riv. di Ing. Agr. 1:19-24.
  16. Takakura, T. 1993. Climate under cover. Kluwer Academic Publishers. p3-13.
  17. Tatineni, A., N. C. Rajapakse, R. T. Fernandez, and J. R. Rieck. 2000. Effectiveness of plant growth regulators under photoselective greenhouse covers. J. Am. Soc. Hortic. Sci. 125:673-678.
  18. Vanninen, D.M., A. I. Pinto, N. S. Nissinen, N. S. Johansen, and L. Shipp. 2010. In the light of new greenhouse technologies: 1. Plant-mediated effects of artificial lighting on arthropods and tritrophic interactions. Ann. Appl. Biol. 157: 393-414. https://doi.org/10.1111/j.1744-7348.2010.00438.x
  19. Wilson, S. B. and N. C. Rajapakse. 2001a. Growth regulation of sub-tropical perennials by photoselective plastic films. J. Environ. Hortic. 19:65-68.
  20. Wilson, S. B. and N. C. Rajapakse. 2001b. Use of photoselective plastic films to control growth of three perennial salvias. J. Appl. Hortic. 3:71-74.