• Title/Summary/Keyword: Tensile force

Search Result 806, Processing Time 0.034 seconds

종이의 단축압축 표준시험법 개발

  • Kim, Hyoung-Jin;Um, Gi-Jeung;Lee, Tai-Ju;Ko, Seung-Tae;Yoo, Yeong-Jeong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.325-330
    • /
    • 2007
  • Uniaxial tensile test are generally much simpler than uniaxial compressive test. Uniaxial compressive test is experimentally more difficult because of the low buckling resistance of a sheet of paper. In order to avoid buckling, many researchers have applied various lateral restraint techniques to investigate paper uniaxial compression behavior. Adding unnecessary force to inhibit compressive deformation of the sheet is unwanted, but sufficient force must be used to inhibit buckling. This study has been carried out to develop new uniaxial compressive standard test method without exerting unnecessary force to paper specimen to prevent buckling.

  • PDF

Evaluation of Resistance Spot Welding Weldability of Aluminum Alloy 5000 Series (SPOT 용접을 이용한 알루미늄계 합금의 용접성 평가)

  • 고준빈;염동빈;최병길;이성구;김엄기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.8-13
    • /
    • 2002
  • In order to obtain the basic informations for the development of high strength and high weldability aluminum alloy sheets, the experimental study was carried out to evaluate resistance spot welding characteristics and welding parameters (welding current, welding time, electrode force) far the aluminum alloy sheets. The mechanical properties of spot weld of aluminum alloy were evaluated by tensile shear test and by peel test at room temperature and also the welding possible zone was established through variation of current electrode force and welding time.

Study to Fatigue Safety of Housing using 3-D FEM (3D-FEM을 이용한 후판하우징의 피로안정성에 대한 연구)

  • Moon, C.H.;Seo, J.H.;Ko, S.H.;Chun, M.S.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.23-26
    • /
    • 2009
  • The purpose of this study is to investigate the fatigue safety and deformation of housing in plate rolling process. For this, we carried out 3-dimensional FEM analysis for housing considering design variations of housing structure. It showed that the housing with rounds under a column is benefits to control thickness accuracy of rolled material, due to smaller elastic deformation and maximum effective stress. Also, we calculated the fatigue safety factors, the ratios of the pulsating equivalent fatigue limit to the maximum tensile stresses analyzed using the equipment force and normal rolling force.

  • PDF

Evaluation of long term behavior of steel plate girder bridges with precast concrete decks (프리캐스트 바닥판을 사용한 강합성거더교의 장기기동 해석)

  • Kim, Su-Hyun;Lee, Jong-Min;Cho, Sun-Kyu;Go, Dong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1326-1331
    • /
    • 2006
  • The precast concrete deck is one of suitable solutions for replacement and new construction in urban area. However, the precast concrete deck could be a weak point of the steel plate girder bridges structurally due to the connections between precast panels in the longitudinal direction. Thereafter, it is necessary for improvement of durability and load carrying capacity to introduce the prestress force in the longitudinal direction Some cracks of connections at the precast concrete deck may be occurred due to live loads, the difference of temperature and long-term effects. The shrinkage and creep of concrete may significantly affect long-term behaviors which occur tensile stresses at the precast concrete deck of steel plate girder bridges. In this study, the time-dependant analysis program has been developed to determine the initial prestress force in the longitudinal direction considering loss of stress at the precast concrete deck. Also it has been estimated the initial prestress force by construction stages and shapes of girder.

  • PDF

Nonlinear Wave Transformation and Dynamic Behaviors of Semi-Submerged Air-Chamber Floating Breakwater (반잠수압기형부방파제의 비선형파랑변형 및 동적거동에 관한 연구)

  • Kim, D.S.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • Generally, it is pointed out that a nonlinear analysis is needed to estimate accurately the water surface fluctuation and dynamic responses of a floating structure in case of large wave reflection. In this study, a frequency-domain method is applied and newly developed to analyze the nonlinear characteristics of the air-chamber floating breakwater. The air-chamber floating breakwater in this study can control well the wave transformation, motions of the structure and its natural frequency by adjusting the air depth in the chamber. Experiments are carried out to verify the numerical results. It is appeared that the mean water level is setup in the anti-node and setdown in the node, while the nonlinearity in wave profile is larger in the node than in the anti-node. Because of vertical mooring system, the sway, especially the time-independent nonlinear component, plays predominant role in the motion. On the other hand, the time-dependent component, as well as the time-independent one to the tensile force of mooring line contributes greatly, and the time averaged value presents tensional force oriented to the onshore side due drift force.

  • PDF

Application of direct tension force transfer model with modified fixed-angle softened-truss model to finite element analysis of steel fiber-reinforced concrete members subjected to Shear

  • Lee, Deuck Hang;Hwang, Jin-Ha;Ju, Hyunjin;Kim, Kang Su
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.49-70
    • /
    • 2014
  • Steel fiber-reinforced concrete (SFRC) is known as one of the efficient modern composites that can greatly enhance the material performance of cracked concrete in tension. Such improved tensile resistance mechanism at crack interfaces in SFRC members can be heavily influenced by methodologies of treatments of crack direction. While most existing studies have focused on developing the numerical analysis model with the rotating-angle theory, there are only few studies on finite element analysis models with the fixed-angle model approach. According to many existing experimental studies, the direction of principal stress rotated after the formation of initial fixed-cracks, but it was also observed that new cracks with completely different angles relative to the initial crack direction very rarely occurred. Therefore, this study introduced the direct tension force transfer model (DTFTM), in which tensile resistance of the fibers at the crack interface can be easily estimated, to the nonlinear finite element analysis algorithm with the fixed-angle theory, and the proposed model was also verified by comparing the analysis results to the SFRC shear panel test results. The secant modulus method adopted in this study for iterative calculations in nonlinear finite element analysis showed highly stable and fast convergence capability when it was applied to the fixed-angle theory. The deviation angle between the principal stress direction and the fixed-crack direction significantly increased as the tensile stresses in the steel fibers at crack interfaces increased, which implies that the deviation angle is very important in the estimation of the shear behavior of SFRC members.

Effect of Cutout Orientation on Stress Concentration of Perforated Plates with Various Cutouts and Bluntness

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-101
    • /
    • 2011
  • Perforated plates with cutouts (or holes) are widely used in structural members. These cutouts provide stress concentration in plates. Extensive studies have been carried out on stress concentration in perforated plates, which consider cutout shapes, boundary conditions, bluntness of cutouts, and more. This study presents stress concentration analyses of perforated plates with not only various cutouts and bluntness but also different cutout orientations. Especially, the effect of cutout orientation on stress concentration is emphasized since structural members have become more complicated recently. To obtain stress concentration patterns, a finite element program, ANSYS, is used. For the designated goal, three parameters are considered as follows: the shapes of polygonal cutouts (circle, triangle, and square), bluntness (a counter measure of radius ratio, r/R), and rotation of cutouts (${\theta}$). From the analyses, it is shown that, in general, as bluntness increases, the stress concentration increases, regardless of the shape and rotation. A more important finding is that the stress concentration increases as the cutouts become more oriented from the baseline, which is the positive horizontal axis (+x). This fact demonstrates that the orientation is also a relatively significant design factor to reduce stress concentration. In detail, in the case of the triangle cutout, orienting one side of the triangle cutout to be perpendicular to the applied tensile forces is preferable. Similarly, in the case of the square cutout, it is more advantageous to orient two sides of square cutout to be perpendicular to the applied tensile force. Therefore, at the design stage, determining the direction of a major tensile force is required. Then, by aligning those polygon cutouts properly, we can reduce stress concentration.

Cyclic tensile stress inhibits Wnt/${\beta}$-catenin signaling in human periodontal ligament cells

  • Kim, Ji-Young;Yang, Daum;Kim, Ha-Neui;Jung, Kyoung-Suk;Chang, Young-Il;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • Periodontal ligament (PDL) tissue is a connective tissue that is interposed between the roots of the teeth and the inner wall of the alveolar bone socket. PDL is always exposed to physiologic mechanical force such as masticatory force and PDL cells play important roles during orthodontic tooth movement by synthesizing and secreting different mediators involved in bone remodeling. The Wnt/${\beta}$-catenin signaling pathway was recently shown to play a significant role in the control of bone formation. In the present study, we applied cyclic tensile stress of 20% elongation to cultured human PDL cells and assessed its impact after six days upon components of the Wnt/${\beta}$-catenin signaling pathway. RTPCR analysis showed that Wnt1a, Wnt3a, Wnt10b and the Wnt receptor LRP5 were down-regulated, whereas the Wnt inhibitor DKK1 was up-regulated in response to these stress conditions. In contrast, little change was detected in the mRNA expression of Wnt5a, Wnt7b, Fz1, and LRP6. By western blotting we found decreased expression of the ${\beta}$-catenin and p-GSK-3${\beta}$ proteins. Our results thus show that mechanical stress suppresses the canonical Wnt/${\beta}$-catenin signaling pathway in PDL cells.

Development and Performance Experiment of Iso-tensioning System using Electrical Resistance Loadcell (전기저항식 로드셀을 이용한 균등긴장시스템 개발 및 성능실험)

  • Park, Won-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.220-226
    • /
    • 2016
  • Because MS(Multi-Strand) cables consist of many strands, a jacking force is applied to each strand one by one for cable construction. All strands should have an equal tensile force when the last one is wedged. This is the core technology for MS iso-tensioning. In this study, a new MS cable iso-tensioning system was developed for controlling and jacking the high-strength strands, with an ultimate tensile strength of 2,200MPa, for a stay cable of extra-dosed/cable-stayed bridges. The newly developed iso-tensioning system consists of electrical resistance load cells, hydraulic jacking devices, hydraulic pumps, and integrated controllers. Moreover, it is embedded with an algorithm that can control and predict the variations in tensile forces of the Master and Slave strands in real time. Actual experiments were carried out to verify the function and performance of the newly developed system. This system was applied successfully to the stay cable construction of 2nd Tae-in extra-dosed bridge in Gwangyang.

Experimental investigation of the pullout behavior of fiber concrete with inclination steel fibers

  • Seyyed Amir Hossein, Madani;S. Mohammad, Mirhosseini;Ehsanolah, Zeighami;Alireza, NezamAbadi
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • Cement-based matrixes have low tensile strength and negligible ductility. Adding fibres to these matrixes will improve their mechanical properties and make these composites suitable for structural applications. Post-cracking tensile strength of steel fibers-reinforced cementitious composite materials is directly related to the number of transverse fibers passing through the crack width and the pulling-out behavior of each of the fibers. Therefore, the exact recognition of the pullout behavior of single fibers is necessary to understand the uniaxial tensile and bending behavior of steel fiber-reinforced concrete. In this paper, an experimental study has been carried out on the pullout behavior of 3D (steel fibers with totally two hooks at both ends), 4D (steel fibers with a total of four hooks at both ends), and 5D (steel fibers with totally six hooks at both ends) in which the fibers have been located either perpendicular to the crack width or in an inclined manner. The pullout behavior of the mentioned steel fibers at an inclination angle of 0, 15, 30, 45, and 60 degrees and with embedded lengths of 10, 15, 20, 25, and 30 millimetres is studied in order to explore the simultaneous effect of the inclination angle of the fibers relative to the alongside loading and the embedded length of fibers on the pullout response in each case, including the maximal pullout force, the slip of the maximum point of pullout force, pullout energy, fiber rupture, and concrete matrix spalling. The results showed that the maximum pullout energy in 3D, 4D, and 5D steel fibers with different embedded lengths occurs at 0 to 30° inclination angles. In 5D fibers, maximum pullout energy occurs at a 30° angle with a 25 mm embedded length.