• Title/Summary/Keyword: Tensile failure load

Search Result 388, Processing Time 0.034 seconds

The Tensile Properties for Powder-driven-nail Connections for Japanese Larch Small Round Timber

  • Shim, Kug-Bo;Lee, Do-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.2 s.130
    • /
    • pp.8-16
    • /
    • 2005
  • In an effort to encourage the development of value added engineered applications for small diameter round timber, research is being conducted to develop and verify design guidelines for connections with specific application to round timbers. The objective of this research is to provide potential users with a number of viable connection options applicable in the fabrication of engineered, round wood structural components and systems. Target uses include trusses, built up flange beams and space frames. This paper presents information on a mortised steel plate connection fabricated using powder driven nails in 6 cm diameter Japanese Larch. The design load for PDN connections are around 1.3 kN per nail with strip and 0.8 kN per nail without stripe. The design model for PDN connectors could be chosen by the number of nails. If the number of nails are more than the critical number between nail bearing and wood failure, the wood failure model could be the way to design the structure safely. The wood failure model needs to be studied more but the model could be the tensile and cleavage mixed failure model.

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

Establishment of Failure Criteria of Repeated Direct Tensile Test to Evaluate Reflective Cracking Resistance of Asphalt Concrete Pavement (아스팔트 콘크리트 포장의 반사균열 저항성 평가를 위한 반복직접인장시험의 파괴기준 설정)

  • Lee, Bong Lim;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1109-1116
    • /
    • 2016
  • There are various test methods for evaluating the reflective cracking resistance of asphalt concrete pavement. Repeated direct tensile test is cheap and simple compared to the other traditional experimental methods. Determination of failure criteria is needed to apply a repeated direct tensile test. Various methods were used to determine the number of failure of repeated direct tensile test. The number of failure was defined as the time to reach 10% of the initial load, this method can be satisfied with specified tolerance of 10%. When the thickness of specimen is increased to 50 mm from 30 mm, the failure number is increased by 13.6 times. Thus, this result shows that the thickness of pavement is a big influence on the reflective cracking resistance. Reflective cracking resistance of asphalt concrete is decreased according to the increase in opening displacement. The repeated direct tensile test can be used as a reflective cracking resistance factor in pavement design, because it can evaluate the reflective cracking resistance according to the pavement thickness, opening displacement, material properties etc.

Process and Strength Evaluation of Mechanical Press Joining (기계적 프레스 접합의 공정 및 강도 평가)

  • Lee, Sang-Hoon;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • New methods for joining sheet of metal are being sought. One of the most promising methods is MPJ (mechanical press joining). It has been used in thin metal work because of its simple process and relative advantages over other methods, as it requires no fasteners such as bolts or rivets, consumes less energy than welding, and produces less ecological problems than adhesive methods. In this study, the joining process and static behavior of single overlap joints has been investigated. During fixed die type joining process for SPCC plates, the optimal applied punching force was found. The maximum tensile-shear strength of the specimen produced at the optimal punching force was 1.75 kN. The FEM analysis result on the tensile-shear specimen showed the maximum von-Mises stress of 373 MPa under the applied load of 1.7 kN, which is very close to the maximum tensile strength of the SPCC sheet(= 382 MPa). This suggests that the FEM analysis is capable of predicting the maximum tensile load of the joint.

Tensile and Shear Strengths of New Type of Cast-in-Place Concrete Insert Anchors Under Monotonic Loading (새로운 형태의 선설치 인서트 앵커에 대한 단조 인장 및 전단강도 평가)

  • Jeon, Ju-Seong;Kim, Ji-Hoon;Oh, Chang-Soo;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 2021
  • The damage to non-structural elements in buildings has been increasing due to earthquakes. In Korea, post-installed anchors produced overseas have been mainly used for seismic anchorage of non-structural components to structures. Recently, a new cast-in-place concrete insert anchor installed in concrete without drilling has been developed in Korea. In this paper, an experimental study was conducted to evaluate the tensile and shear strengths of the newly developed anchor under monotonic load. The failure modes of the tension specimens were divided into concrete breakout failure and steel failure, and all shear specimens showed steel failure. In both tension and shear, the maximum loads of specimens were greater than the nominal strengths predicted by the concrete design code (KDS 14 20 54). As a result, it is expected that the current code can also be used to calculate the strength of the developed cast-in anchor.

Peel-tension Fatigue Strength of Mechanical Press Joints of Cold Rolled Steel Sheet (냉간 압연강 판재 기계적 접합부의 인장-박리 피로 강도)

  • Lee, Man-Suk;Park, Jong-Min;Kim, Taek-Young;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.42-48
    • /
    • 2012
  • Peel-tension fatigue experiments were conducted for investigating on fatigue strength of mechanical press joints of SPCC steel sheet used in the field of the automobile industry. In addition, finite element method analysis on the peel-tension specimen was conducted using HyperMesh and ABAQUS softwares. The cold rolled mild steel was used to join the T-shaped peel-tension specimen with a button diameter of 5.4 mm and a punch diameter of 8.3 mm. The fatigue limit load amplitude was found to be 112.4 N at the number of cycles 106, indicating that the ratio of fatigue limit load to static peel-tension strength was about 8%. This value suggests that the mechanical press joint is highly vulnerable to peel-tension load rather than to tensile-shear load, considering that the ratio of fatigue limit load to static tensile-shear strength was about 43%. Fatigue failure mode was found to be interface-failure mode.

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.

A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation - (가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 -)

  • Jang, Suk-Han;Kim, Hee-Kwang;Lee, Kang-Hyeon;Han, Kyung-Soo;Ham, Bang-Wook;Chung, Ki-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.

Prediction of the load-displacement response of ground anchors via the load-transfer method

  • Chalmovsky, Juraj;Mica, Lumir
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.359-370
    • /
    • 2020
  • Prestressed ground anchors are important structural elements in geotechnical engineering. Despite their widespread usage, the design process is often significantly simplified. One of the major drawbacks of commonly used design methods is the assumption that skin friction is mobilized uniformly along an anchor's fixed length, one consequence of which is that a progressive failure phenomenon is neglected. The following paper introduces an alternative design approach - a computer algorithm employing the load-transfer method. The method is modified for the analysis of anchors and combined with a procedure for the derivation of load-transfer functions based on commonly available laboratory tests. The load-transfer function is divided into a pre-failure (hardening) and a post-failure (softening) segment. In this way, an aspect of non-linear stress-strain soil behavior is incorporated into the algorithm. The influence of post-grouting in terms of radial stress update, diameter enlargement, and grout consolidation is included. The axial stiffness of the anchor body is not held constant. Instead, it gradually decreases as a direct consequence of tensile cracks spreading in the grout material. An analysis of the program's operation is performed via a series of parametric studies in which the influence of governing parameters is investigated. Finally, two case studies concerning three investigation anchor load tests are presented.

Plasticity Model of RC under Cyclic Load (주기하중을 받는 철근 콘크리트 소성 모델)

  • 박홍근;강수민;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.451-454
    • /
    • 1999
  • An existing plasticity model using multiple failure criteria is modified to describe the behavior of reinforced concrete planar members under cyclic load. Multiple failure criteria are used to define both isotropic damage of compressive crushing and anisotropic damage of tensile cracking. A numerical method is developed to define multi-directional and non-orthogonal crack directions. The material model is implemented in the finite element analysis and verified by comparison with existing experiments of reinforced concrete shear wall.

  • PDF