• Title/Summary/Keyword: Tensile failure load

Search Result 388, Processing Time 0.029 seconds

Strengthening Effects of Epoxy Mortar Systems on Reinforced Concrete Beams by Flexural Tensile Strength (변성에폭시 모르터 휨인장강도가 단면증대 보에 미치는 영향)

  • 류현희;신영수;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.787-790
    • /
    • 2000
  • This paper presents an experimental study on flexural behavior of structural member enlarged with epoxy mortar system. The main test variable is flexural tensile strength. A series of 4 test beams was tested to shoe the corresponding effect of each variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. The results show that the flexural tensile strength of retrofitted materials have no relation load-deflection, but to load-strain, and failure mode.

  • PDF

Evaluation of Failure Strength of Woven CFRP Composite Plate Subject to Axial Load by Tan-Cheng Failure Criterion (Tan-Cheng 파손기준을 이용한 직물 CFRP 적층판의 원거리 하중에 대한 파괴강도 평가)

  • Kim, Sang-Young;Park, Hong-Sun;Kang, Min-Sung;Lee, Woo-Hyung;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.360-365
    • /
    • 2009
  • In the manufacture of CFRP(Carbon Fiber Reinforced Polymer Composite) composite structures, various independent components join by bolts and pins. Holes for bolts and pins have an effect on the failure strength of such structures, because those act as notches in structures. The failure characteristic of such structures are different from those of plain plate subject to remote load. In this paper, tensile properties of woven CFRP composite plates with laminates of $0^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were obtained according to ASTM D 3039. By using obtained tensile failure strength and Tan-Cheng failure criterion, tensile failure strength of CFRP laminate with arbitrary fiber angle were evaluated. Also, the degradation of tensile properties by center hole(${\phi}10mm$) with a remote load was evaluated and the failure strengths were applied to Tan's failure criterion, similarly.

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

A numerical investigation of the tensile behavior of the thread-fixed one-side bolted T-stubs at high temperature

  • You, Yang;Liu, Le;Jin, Xiao;Wang, Peijun;Liu, Fangzhou
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.605-619
    • /
    • 2022
  • The tensile behavior of the Thread-fixed One-side Bolt (TOB) at high temperatures was studied using the Finite Element Modeling (FEM) to explore the structural responses that could not be measured in tests. The accuracy of the FEM was verified using the test results from the failure mode, load-displacement curve as well as yielding load. Three typical failure modes of TOB connected T-stubs were observed, which were the Flange Yielding (FY), the Bolt Failure (BF) and the Coupling Failure mode (CF). The influence of the flange thickness tb and the temperature θ on the tensile behavior of the T-stub were discussed. The initial stiffness and the yielding load decreased with the increase of the temperature. The T-stubs almost lost their resistance when the temperature exceeded 700℃. The failure modes of T-stubs were mainly decided by the flange thickness, which relates to the anchorage of the hole threads and the bending resistance of flange. The failure mode could also be changed by the high temperature. Design equations in EN 1993-1-8 were modified and verified by the FEM results. The results showed that these equations could predict the failure mode and the yielding load at different temperatures with satisfactory accuracy.

Tensile Properties of Metal Plate Connector in Domestic Softwood Lumber (국산 침엽수 철물접합부의 인장하중 특성)

  • Shim, Kug-Bo;Park, Jung-Hwan;Lee, June-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.96-103
    • /
    • 2003
  • This study was conducted to evaluate the tensile properties of metal plate connector for the domestic major softwoods, such as Korean red pine, Korean white pine, and Japanese larch. The maximum tensile load of Korean red pine was 3,612kgf in AA type, it was 1.2 and 1.7 times higher load than that of Japanese larch and Korean white pine. In EA type, it was 2,704kgf, and 1.1 and 1.5 times higher than the loads of Japanese larch and Korean white pine. The failure modes of metal plate connector were metal plate withdrawal, plate tensile failure, and wood shear block failure. The failure mode of Korean red pine connector was tensile failure of plate, that is reason of the high tensile load resistance for metal plate connections in Korean red pine. The mechanical properties of metal plate connector could be predicted by the Foschi model parameter. In the initial stage, the Korean red pine connector was stiffer than the other species. The design values for metal plate connector per tooth was 25, 22, and 15kgf for Korean red pine, Japanese larch, and Korean white pine in AA type and 19, 17, and 13kgf in EA type.

Tensile Strength of Post-Installed High-Shear Ring Anchors (HRA) After Shear Loading (전단 하중을 경험한 후설치 고전단 링앵커의 인장 강도)

  • Jeon, Sang Hyeon;Chun, Sung-Chul;Kim, Jae Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.61-68
    • /
    • 2018
  • Tensile load tests were conducted on High-Shear Ring Anchors (HRAs) after shear load had been applied to the HRAs, which had been developed to reduce the number of the anchors. Test variables include the embedment length of the rod and the width of the specimens and a total of 12 specimens were tested. Test results show that the HRAs pulled out due to bond failure or steel failure occurred in case that the HRAs were installed to the members with 300mm or greater width and the embedment length of 160mm (the actual embedment of rod is 140mm) or deeper. Except 4 HRAs showing steel failure of rod, the minimum and average of test-to-prediction by ACI 318-14 ratios are 1.18 and 1.79, respectively. The tensile strength of HRAs, after shear load was applied to the HRAs, can be safely evaluated by the minimum among the concrete breakout strength and bond strength with the actual embedment length of the rod.

Fracture Behaviors of Headed Bars with Different Plate Types (플레이트 형상에 따른 Headed Bars의 파괴거동에 관한 연구)

  • 박현규;윤영수;류영섭;이만섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.935-940
    • /
    • 2002
  • This paper presents the failure mode on Headed Bars and prediction of tensile capacity, which is governed by concrete cone failure. 17 different plate types, three different concrete strengths and three different welding types of specimens were simulated. Static tensile load was applied Headed Bars were manufactured in different areas, and their shape and thickness are based on ASTM 970-98. Calculation of embedment length in concrete is conducted based on CSA 23.3-94, and static tensile load was applied. Tested pullout capacities were compared to the values determined using current design methods such as ACI-349 and CCD method.

  • PDF

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

An Experimental Study on Flexural Repair of Reinforced Concrete Beams with the CFRP Sheet (탄소섬유시트를 사용한 철근콘크리트 구조물의 휨 보강에 관한 실험적 연구)

  • 박정원;박상렬;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.781-786
    • /
    • 2000
  • This paper presents the behavior and strenghening effect of reinforced concrete rectangular beams strengthened sing CFRP sheets with different strengthening level. In general, normally strengthened beams are failed by interfacial shear failure (delamination) within concrete, instead of by tensile failure of the CFRP sheets. The delamination occurred suddenly and the concrete cover cracked vertically by flexure was spalled off due to the release energy. The ultimate load considerably increased with an increase of strengthening level, while the ultimate deflection significantly decreased. The tensile force of CFRP sheets and average shear stress of concrete at delamination failure were curvilinearly proportional to the strengthening level. Therefore, the increment of ultimate load obtained by strengthening was curvilinearly proportional to th strengthening level.

  • PDF

Strengthening Effect of R/C Beams with different Strengthening Level

  • Park, Sang-Yeol;Park, Jeong-Won;Min, Chang-Shik
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.113-120
    • /
    • 2000
  • This paper presents the behavior and strengthening effect of reinforced concrete rectangular beams strengthened using CFRP sheets with different strengthening level. In general, normally strengthened beams are failed by interfacial shear failure (delamination) within concrete, instead of by tensile failure of the CFRP sheets. The delamination occurred suddenly and the concrete cover cracked vertically by flexure was spalled off due to the release energy. The strengthened beams were stiffer than the control beam before and after reinforcement yielding. The ultimate load considerably increased with an increase of strengthening level, while the ultimate deflection significantly decreased. The tensile force of CFRP sheets and average shear stress of concrete at delamination failure were curvilinearly proportional to the strengthening level. Therefore, the increment of ultimate load obtained by strengthening was curvilinearly proportional to the strengthening level. The averaged horizontal shear stress of concrete at the interface ranges between (equation omitted) and (equation omitted) (in kg/$\textrm{cm}^2$) depending on strengthening level.

  • PDF