• Title/Summary/Keyword: Tensile creep

Search Result 231, Processing Time 0.024 seconds

Creep Characterization of 9Cr1Mo Steel Used in Super Critical Power Plant by Conversion of Stress and Strain for SP-Creep Test (SP-Creep 시험의 응력 및 변형률 환산에 의한 초임계압 발전설비용 9Cr1Mo강의 크리프 특성 평가)

  • Baek, Seung-Se;Park, Jung-Hun;Yu, Hyo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1034-1040
    • /
    • 2006
  • Due to the need of increasing thermal efficiency, supercritical pressure and temperature have been utilized in power plants. It is well known that 9Cr1Mo steel is suitable fer use in power plants operating at supercritical conditions. Therefore, to ensure the safety and the soundness of the power plant, creep characterization of the steel is important. In this study, the creep characterization of the gCr1Mo steel using small punch creep(SP-Creep) test has been described. The applied load and the central displacement of the specimen in SP-Creep test have been converted to bearing stress and strain of uc, respectively. The converted SP-Creep curves clearly showed the typical three-stage behavior of creep. The steady-state creep rate and the rupture time of the steel logarithmically changed with the bearing stress and satisfied the Power law relationship. Furthermore, the Larson-Miller parameter of the SP-Creep test agreed with that of the tensile creep test. From the comparison with low Cr-Mo steels, the creep characteristics of 9Cr1Mo steel proved to be superior. Thus, it can be confirmed that the 9Cr1Mo steel is suitable for supercritical power plant.

HIP Diffusion Bonding of Two Types of Superalloys for Engine Blisk Applications (엔진 블리스크 제조를 위한 초내열합금 이종재의 HIP Diffusion Bonding)

  • 나영상;황형철;염종택;권영삼;박노광
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.60-65
    • /
    • 2003
  • HIP diffusion bonding of Ni-based superalloys, cast Mar-M247 (MM247) and Udimet 720 (U720) powder, was experimentally and numerically studied. Subsolvus HIP treatment was optimized by investigating the variations of high temperature tensile properties of HIP-bonded specimens with powder size, HIP'ing time, etc. While the tensile strength at high temperatures showed no detectable changes, the tensile elongation and reduction in area were slightly increased as the powder size decreased from -140 mesh to -270 mesh. While as-HIP'ed U720 showed a high tensile strength comparable to that of lorded U720 alloy, the HIP diffusion-bonded specimen showed a strength lower than the forged U720 alloy and the cast MM247 alloy The increase of HIP'ing tune from 2 hours to 3 hours resulted in a rapid risc of tensile strength and elongation due to the disappearence of microvoids in the cast MM247. FEM simulation for HIP process was conducted by applying the McMeeking micromechanical model, which uses power-law creep model as constitutive equations. ABAQUS user subroutine CREEP with an implemented microscopic model was used for the simulation. Numerical simulation was shown to be essential for the near-net shape manufacturing as well as the HIP process optimization.

Studies on the Rheological Property of Korean Noodles -I. Viscoelastic Behavior of Wheat Flour Noodle and Wheat-Sweet Potato Starch Noodle- (한국 재래식 국수류의 유체 변형성에 관한 연구 -제 1 보 : 밀국수와 냉면국수의 점탄성-)

  • Lee, Cherl-Ho;Kim, Cheol-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.183-188
    • /
    • 1983
  • The viscoelastic behavior of traditional Korean noodles was examined by using a tensile tester built in the laboratory. The creep test of cooked noodle strand showed that a linear viscoelastic response could be expected for a short time of creep, i.e. 120 sec for wheat flour noodle and 60 sec for wheat-sweet potato starch noodle, with the stress range between $4{\times}10^4\;and\;14{\times}10^4\;dyn\;cm^{-2}$. The elastic modulus was estimated to be $7.0{\times}10^5\;dyn\;cm^{-2}$ for wheat flour noodle and $3.9{\times}10^5\;dyn\;cm^{-2}$ for wheat-sweet potato starch noodle. A peculiar increase in viscosity with increasing stress, i.e. stress-hardening, was observed in the noodles studied.

  • PDF

Mechanical testing of the behavior of steel 1.7147 at different temperatures

  • Brnic, Josip;Turkalj, Goran;Canadija, Marko
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.549-560
    • /
    • 2014
  • The paper provides the test results and analysis on the behavior of steel 1.7147 at different temperatures. Mechanical uniaxial tests were used to determine mechanical properties, resistance to creep and Charpy impact tests to determine impact energy. Test results are presented in the form of engineering stress-strain diagrams, creep curves as well as numerical data related to impact energy. The results show that the tensile strength has the highest value at room temperature, and the same goes for the yield strength as well as for modulus of elasticity. After room temperature both of mentioned properties decrease with temperature increasing. Some of creep curves were modeled using rheological models and analytical equation. Based on Charpy impact energy an assessment of fracture toughness was made.

Creep Properties of Type 316LN Steel Welded by the SAW Method (SAW 법으로 용접된 Type 316LN 강의 크리프 성질)

  • Kim W.G.;Yin S.N.;Ryu W.S.;Yi Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.105-106
    • /
    • 2006
  • The creep properties have been evaluated for type 316LN stainless steel welded by the SAW method. The creep tests were conducted with different stress levels for both the base and weld metals at $550^{\circ}C\;and\;600^{\circ}C$. The results of the creep-rupture time of the weld metal did not show a large difference when compared to those of the base one, though it exhibited a little lower value at $600^{\circ}C$. The creep rate of the weld metal was lower than that of the base one at the same stress and rupture-time conditions. The creep-rupture ductility of the weld metal is found to be decreased by about 60%, compared to the base one. This is due to the decreasing of tensile elongation and the increasing of the yield stress in the weld metals.

  • PDF

Experimental Study on Long-Term Performance Evaluation of Geosynthetic Strip Reinforcement (띠형 섬유보강재의 장기성능 평가를 위한 실험적 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyeung;Cho, Sam-Deok;Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2010
  • In this study, the long-term performance tests, which have extensibility, creep deformation, installation resistance and durability characteristic, is conducted to apply geosynthetic strip in field. The strength reduction factors using the test results are evaluated in order to calculate long-term design tensile strength. First, the creep deformation was evaluated by both the stepped isothermal method(SIM) and the time-temperature superposition(TTS) method. The creep reduction factor is reasonable to apply 1.6. Second, the result of installation damage test had little damage of yarn, which affected strength of reinforcement. Therefore, it can be analyzed that the installation damage of geosynthetic strip has little effect of long-term design tensile strength. Finally, the durability reduction factor considering chemical, biological and outdoor exposure resistance is reasonable to apply 1.1, which is considered the stability and economic efficiency of reinforced earth wall using geosynthetic strip.

  • PDF

Experimental Assessment of Mechanical Properties of Geo-grid Reinforced Material and Long-Term Performance of GT/HDPE Composite

  • Seo, Jung-Min;Min, Kyung-Ho;Hwang, Beong-Bok;Lee, In-Chul;Ruchiranga, Jayasekara Vishara;Jeon, Han-Yong;Jang, Dong-Hwan;Lim, Joong-Yeon
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.247-258
    • /
    • 2008
  • This paper is concerned with the long-term performance of geo-textile (GT) composites in terms of creep deformation and frictional properties. Composites of PVA GT and HDPE GM were made to investigate the advanced properties of long-term performance related to waste landfill applications. The same experiments were also performed for typical polypropylene and polyester GT and compared to PVA GT/HDPE GM composites. We also develop high performance GT composites with GM by using PVA GT, which is capable of improving the frictional properties and thus enhances long-term performance of GT composites. Experimental study reveals that the friction coefficient of GT composites is relatively large compared with those of polyester and polypropylene non-woven GT as long as the friction media has similar size to the particles of domestic standard earth. In addition, the geo-composites bonded with geo-grid by a chemical process were investigated experimentally in terms of strain evaluation and creep response values. Geo-grid plays an important role as a reinforcing material. Three kinds of geo-grid were prepared as strong yarn polyester and they were woven type, non-woven type, and wrap knitted type. The sample geo-grids were then coated with PVC. The rib tensile strength tests were conducted to evaluate geo-grid products in terms of tensile strength with regard to single rib. The test was performed according to GRI-GGI. It was concluded again from the experiments that the tensile and creep strains of the geo-grid showed such stable values that the geo-grid prepared in this study could protect geo-textile partially in practical structures.

The Effect of Ca Addition on Creep Behavior of As-cast Mg-8.0Zn-1.6Y Alloys with Icosahedral Phase (Icosahedral 상을 갖는 Mg-8Zn-1.6Y 합금의 크리프 거동에 미치는 Ca 첨가 영향)

  • Jung, Young-Gil;Yang, Wonseok;Kim, Shae K.;Lim, Hyunkyu;Oh, Gun-Young;Kim, Youngkyun;Kim, Do Hyang
    • Journal of Korea Foundry Society
    • /
    • v.40 no.2
    • /
    • pp.7-15
    • /
    • 2020
  • The high-temperature stability of Mg-8.0Zn-1.6Y (wt.%) alloys upon the addition of Ca has been investigated by characterizing the ignition temperature, microstructure, tensile and creep properties. The ignition temperature increases with an increase in the Ca content, indicating that an addition of Ca enhances the ignition resistance of the Mg-Zn-Y alloy. The as-cast microstructures of all tested alloys mainly consisted of the dendritic α-Mg matrix and I-phase (Mg3Zn6Y) at the grain boundaries. In the Ca-added Mg-8.0Zn-1.6Y alloys, the Ca2Mg6Zn3 phase forms, with this phase fraction increasing with an increase in the Ca contents. However, a high volume fraction of the Ca2Mg6Zn3 phase rather deteriorates the mechanical properties. Therefore, a moderate amount of Ca element in Mg-8.0Zn-1.6Y alloys is effective for improving the tensile and creep properties of the Mg-Zn-Y alloy. The Mg-8.0Zn-1.6Y-0.3Ca alloy exhibits the highest tensile strength and the lowest creep strain among the alloys investigated in the present study. The creep resistance of Mg-Zn-Y-Ca alloys depends on the selection of the secondary solidification phase; i.e., when Ca2Mg6Zn3 forms in an alloy containing a high level of Ca, the creep resistance deteriorates because Ca2Mg6Zn3 is less stable than the I-phase at a high temperature.

High Temperature Creep Characteristics Evaluation for Degraded Heat Resistance Steel of Power Plant by Mini-Specimen (미소시험편에 의한 재질열화된 내열강의 고온 크리프 특성 평가)

  • Lyu, Dae-Young;Baek, Seung-Se;Yu, Hyo-Sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.429-435
    • /
    • 2003
  • In this study the new creep test using miniaturized specimen(10${\times}$10${\times}$0.5 ㎣) was performed to evaluate the creep characteristics for degraded materials of 2.25Cr-1Mo steel. For this creep test, the artificially aged materials for 330 hrs and 1820hrs at $630^{\circ}C$ were used. The test temperatures applied for the creep deformation of miniaturized specimens was X$630^{\circ}C$ and the applied loads were between 45 kg∼80 kg. After creep test, macro- and microscopic observation were conducted by the scanning electron microscope(SEM). The creep curves depended definitely on applied load and microstructure and showed the three stages of creep behavior like uniaxial tensile creep curves. The load exponents of virgin, 330 hrs and 1820 hrs materials based on creep rate showed 14.8, 9.5 and 8.3 at $550^{\circ}C$ respectively, The 1820 hrs material showed the lowest load exponent and this behavior was also observed in the case of load exponent based on creep rupture time. In contrast to virgin material which exhibited fined dimple fractography, a lot of carbides like net structure and voids were observed on the fractography of degraded materials.

Effect of Mo addition on the Creep Properties of 9Cr-3W Steel (9Cr-3W 강의 크리프 특성에 미치는 Mo 첨가의 영향)

  • Kim, Yong-Rai;Jang, Jinsung;Kim, Tae-Kyu
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The effect of the Mo addition on the high temperature creep properties of the 9Cr-3W steel was also evaluated. Two experimental steels, (9Cr-3W and 9Cr-3W-0.5Mo), were prepared using a vacuum induction melting process, followed by hot rolling and heat treatment processes. Three types of precipitates, ($M_{23}C_6$, Nb-rich MX and V-rich MX) were observed in a typical tempered martensitic matrix. Significant effects of the Mo addition on the tensile properties were not observed. However, the creep properties at $650^{\circ}C$ under applied stresses of 140 and 150 MPa were considerably enhanced by the Mo addition. The microstructural observation after the creep test indicated that the addition of Mo could function to retain the recovery of the martensitic matrix, thus resulting in the enhanced creep properties of the 9Cr-3W-0.5Mo steel. Furthermore coarsening of the $M_{23}C_6$ carbides and formation of Laves phases were observed in both samples after the creep tests.