• Title/Summary/Keyword: Tensile creep

Search Result 231, Processing Time 0.023 seconds

Improvement of Lift-off Tests via Field Evaluation of Residual Load in Ground Anchor (현장 잔존긴장력 평가를 통한 리프트오프 시험 방법 개선)

  • Song, minkwon;Park, Seong-yeol;Lee, Sangrae;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.43-51
    • /
    • 2019
  • At present, the ground anchor method is commonly applied to securing the slope stability in Korea. The ground anchor is reported to decrease in tensile load due to aging and environmental influences with time such as corrosion, relaxation, creep and so on. In Korea, the lift-off test is performed for the periodic inspection or cases when the symptoms of deterioration on anchors and the residual tensile load of the anchors is checked. However, the current lift-off test standard (MOLIT, 2010) is not fully specified in details. In this study, the factors affecting the lift-off test were investigated based on the previous research and foreign standards and lift-off tests were performed with consideration for the loading and unloading cycle, load increment method, and tensioning tendon method. Based on the results, this paper proposes improved testing and evaluation procedures of the lift-off test considering the workability and time limits in the field.

Evaluation of Loss of Prestress Force of Tensile Anchor by Long Term Measurement (장기계측을 통한 인장형 앵커의 인장력 손실 평가)

  • Lee, Bongjik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.15-22
    • /
    • 2015
  • In this study, to evaluate the long-term behavior characteristics and the loss of prestress force, the long-term measurement of the tensile anchors in the actual construction was performed and the results were analyzed comparing with the existing estimation. As the reinforcement member used for the purpose of slope stability or uplift-resisting of the permanent structure, etc, the permanent anchor should maintain the functions during the performance period of the structure differently from the temporary anchor. However, as the time passes by, since the relaxation and the creep of the anchor occur constantly, the management for the loss of tensile force is essential to perform the functions stably. So far, the loss of the tensile force has been estimated according to the reduction of the prestress using elasticity theory and using the relaxation value according to the type of tension member and the test using the long-term measurement is limited. Therefore, in this study, the site condition and the ground were investigated for the tensile anchor in the actual construction and the long-term measurement results more than 500 days was analyzed by installing the loadcell, inclinometer and the groundwater level gauge. In addition, the long-term behavior characteristics were evaluated by comparing the disposition of the measured earth retaining wall and the tension force loss of the anchor with the existing interpretation results. In the evaluation results, the most of the tension force loss occurs within 90 days and the loss was measured less than the estimated values.

Fracture Behaviors of Oxide Scales on the Metallic Substrate and the Influence of Oxide Scales for the Strength of materials (산화피막의 파괴거동 및 산화피막이 소지금속의 기계적 강도에 미치는 영향)

  • ;;T. Narita
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.187-190
    • /
    • 2003
  • An Fe-25Cr steel was oxidized in Ar at 973K with or without external stesses of 30~35Mpa. A 0.1 ${\mu}{\textrm}{m}$ thick Cr$_2$O$_3$scales was formed during pre-treatment in Ar. Cracking on the oxides scales commenced at the alloy grain boundary by the end of second creep stage, arrayed almost perpendicular to the direction of the tensile directions. On the contrary, a scale formed in $N_2$-0.1%SO$_2$shows poor adherence on the metal substrate. In this case, the strength of materials is much lower than in Ar

  • PDF

An Experimental Study on the Replacement Proportion of Recycled Aggregate Effecting on the Engineering Properties of Recycled Concrete (재생골재콘크리트의 공학적 특성에 미치는 재생골재 혼합조건의 영향에 관한 실험적 연구(제2보 경화콘크리트의 성상 및 비파괴 시험 적용성에 관하여))

  • 남상일;이상수;류광일;박정일;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.22-25
    • /
    • 1993
  • The study of recycled aggregate concrete in which demolition waste is utilized to produce aggregate for new concrete, can contribute to the solution of two problems, The first is the shortage of aggregate from river, and the second is the waste disposal problem. In comparison with natural aggregate concrete, recycled aggregate concrete shows reductions in compressive strength , tensile strength, vending strength , shear strength and increases in drying shrinkage and creep. Recycled aggregate concrete may also be less durable due to increase in porosity and permeability. The purpose of this study is to investigate and analyze the variation of engineering properties according to replacement proportion of recycled aggregates and applicability of non-destructive test in the gardened recycled concrete.

  • PDF

An Experimental Study on the Replacement Proportion of Recycled Aggregate Effecting in the Engineering Properties of Recycled Concrete (Part 1, Experimental Program and Fluidity Performance of Fresh Concrete (재생골재콘크리트의 공학적 특성에 미치는 재생골재 혼합조건의 영향에 관한 실험적 연구 (제 1보, 실험계획 및 아직 굳지 않은 유동화 특성을 중심으로 ))

  • 최진성;윤병수;임정수;심진만;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.16-21
    • /
    • 1993
  • The study of recycled aggregate concrete in which demolition waste is utilized to produce aggregate for new concrete, can contribute to the solution of two problems. The first is the shortage of aggregate from river, and the second is the waste disposal problem. In comparison with natural aggregate concrete, recycled aggregate concrete shows reductions in compressive strength, tensile strength , vending strength, shear strength and increases in drying shrinkage and creep. Recycled aggregate concrete may also be less durable due to increase in porosity and permeability. Therefore, the purpose of this study is to analyze the applicability of recycled concrete in the influence of a substitute ratio of recycled sand gravel.

  • PDF

Characteristic of Fatigue Properties with Tension and Bending Loading Using High Strength Steel Wire (고강도 강선의 인장 및 회전굽힘 피로특성)

  • U, Byeong-Cheol;Kim, Sang-Su;Kim, Byeong-Geol;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.161-167
    • /
    • 2001
  • The overhead transmission wires operating both at warm temperature and tighten state for a long period of time in a power transmission plant are degraded by air pollution, wind, creep and slip between steel wire and aluminium conductor. The objective of this study is to investigate to investigate the characteristics of fatigue properties with tension and bending loading of a high carbon steel wire. The fatigue behaviors have been carried out by tension-tension, 4 points bending and 3 points bending loading. In the present study, a conventional fatigue strengths between 4 points bending and tension-tension fatigue were determined by Gerber, Sorderberg and Goodmans theory and we investigated S-N diagram for bending and tensile loading.

Failure Analysis of Waterwall Tubes in Super Critical Boiler (초임계압 보일러 수냉벽 튜브의 파열사고 분석)

  • Kim, B.S.;Jung, N.G.;Kim, D.S.;Lee, S.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. Water is converted to steam inside the waterwall tubes. Many chemical components dissolved in boiler water come out of itself, deposit to the tube wall surface, prohibit heat transer, raise tube metal temperature, eventually fail the boiler tubes. Several tasks such as fracture surface study, tensile test, hardness test, metallurgical test, composition analysis of sticking elements were conducted to identify the root cause of tube failure.

  • PDF

A Study of Plastic Deformation Mechanisms in $Fe_3$Al Intermetallics Alloys by Inelastic Deformation Theory (비탄성 변형이론을 이용한 $Fe_3$Al 금속간화합물의 소성변형 기구 고찰)

  • 정호철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.180-183
    • /
    • 1999
  • It is well known that Fe3Al intermetallic compound shows an anomalous peak of the yield strength at about 50$0^{\circ}C$ and then decrease at higher temperatures The dislocation structure was examined by transmission electron microscopy and high temperatures. The dislocation structure was examined by transmission electron microscopy and high temperature mechanical properties were examined by tensile and load relaxation tests. The flow stress curves obtained from load relaxation tests were then analyzed in terms of internal variable deformation theory. it was found that the flow curves consisted of three micro-deformation mechanisms -i. e inelastic deformation mode plastic deformation mode and dislocation creep deformation mode depending on both dislocation structure and deformation temperature. The flow curves could be well described by the constitutive equations of these three micro-deformation mechanisms based on the internal variable deformation theory.

  • PDF

Effect of Bonding Condition on High Temperature Mechanical Properties of TLP Bonded Joints of FE-35Ni-26Cr Alloy (Fe-35Ni-26Cr 주강 액상확산접합부의 고온기계적 특성에 미치는 접합조건의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.96-103
    • /
    • 2000
  • This study investigated the effects of bonding temperature and bonding atmosphere on high temperature mechanical properties of transient liquid phase(TLP) bonded joints of heat resistant alloy using MBF-50 insert metal. Specimens were bonded at 1,423~1,468K for 600s. Microconstituents of {TEX}$Cr_{7}(C,B)_{3}${/TEX}were formed in the bonded region when the bonding temperature was low. The amount of microcostituents in the bonded layer decreased with increasing the bonding temperature, and the microconstituents in the bonded layer disappeared at the bonding temperature above 1,468K. The tensile strength of the joints at elevated temperatures increased with the increase the bonding temperature and was the same level as one of the base metal in the bonding temperature over 1,453K. Microstructure and alloying element distributions of the bonded region bonded in Ar and $N_2$atmosphere were similar to those of the bonded in vacuum. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

Characteristic of fatigue properties with tension and bending loading using high strength steel wire (고강도 강선의 인장 및 회전굽힘 피로특성)

  • Woo, Byung-Chul;Kim, Sang-Soo;Kim, Byung-Guel;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.274-279
    • /
    • 2000
  • The overhead transmission wires operating both at warm temperature and tighten state for a long period of time in a power transmission plant are degraded by air pollution, wind, creep and slip between steel wire and aluminium conductor. The objective of this study is to investigate a high carbon steel wire. We tested for basic mechanical properties and 3 types fatigue behavior, tension-tension, 4 points bending and 3 points bending fatigues. In this study, a conventional fatigue strengths between 4 points bending and tension-tension fatigue were determined by Gerber, Sorderberg and Goodman's theory and we investigated S-N diagram for bending and tensile loading.

  • PDF