• Title/Summary/Keyword: Tensile Stress

Search Result 2,804, Processing Time 0.032 seconds

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.

Cryogenic Tensile Behavior of Ferrous Medium-entropy Alloy Additively Manufactured by Laser Powder Bed Fusion

  • Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Hyoung Seop Kim;Jae Wung Bae;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBF-processed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.

유한요소법에 의한 3차원 충격파 해석

  • 진성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.773-777
    • /
    • 1995
  • This thesis attempt to explore the shape of stress wave propagation of 3-dimensional stress field which is made in the process of time increment. A finite element code about 3-dimensional stress wave propagation is developed for investigating the changing shape of the fracture by the impact load. The Finite Element Code, which is the solution for the 3-dimensional stress wave analysis, based on Galerkins and Newmark- .betha. method at time increment step. The tensile stress and compressive stress become larger with the order of the middle, the upper and the opposite layers when the impact load is applied. In a while the shear stress become larger according to the order of the upper, the middle and the opposite layers when impact load applied.

  • PDF

An Experimental Study on the Measurement of Temperature and Thermal Stress of Wall Type Mass Concrete Structure (벽체형 매스콘크리트구조물의 온도 및 온도응력측정에 관한 실험적 연구)

  • 강석화;이용호;정한중;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.173-177
    • /
    • 1995
  • Thermal cracks ard occured when thermal stress due to the hydration of cement exceeds the tensile strength of concrete. Since cracking causes poor durability of concrete, the effect of thermal cracking should be included for the desing and construction of massive concrete structures. In this study, an experiments are performed for the investigation of time dependent temperature and thermal stress of massive concrete structure at early ages. In order to measure temperatures and thermal stresses, concrete stress meter, embedded strain meter, non-stress meter, and thermocouples are used. Based on the analyses of measured thermal stress data, measured values by concrete stress meter are more reliable than those by embedded strain meter and non-stress meter, And measured values by concrete stress meter are compared with the calculated values by FEM program developed by DICT (DWTS2D). Calculated values by DWTS2D show good agreement with measured values.

  • PDF

Residual Stress Redistribution on Welds of Nuclear Component by Mechanical Stress Relieving Methods (기계적 응력이완 방법에 의한 원전기기 용접부의 잔류응력 재분포)

  • 이세환;김종성;진태은
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2004
  • Residual stresses, which can be produced during the welding process, play an important role in an industrial field. Welding residual stresses are exerting negative effect on the fatigue behavior and integrity of structure. In this study, as a result of the thermal elasto-plastic finite element analysis for the welds of a nuclear component, the residual stress distributions are estimated for as-welded condition. Also, finite element techniques are developed to simulate the relaxation of the residual stresses according to the various mechanical stress relieving(MSR) loads such as hydrostatic pressure loading, tensile pipe-end loading, and mechanical stress improvement process(MSIP) loading. Finally, the results of residual stress redistributions for various loading conditions are compared and reviewed qualitatively and quantitatively to find an optimum loading condition.

The Effect of W Particle Volume Percent on the Residual Stress of W Heavy Alloy (텅스텐계 중합금에서 텅스텐 입자의 부피비가 잔류응력에 미치는 영향)

  • 송홍섭
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.52-59
    • /
    • 1994
  • Since the coefficient of thermal expansion (CTE) of matrix phase is larger about 4 times than that of W particle in tungsten heavy alloy, the thermal stresses due to the CTE difference between the two phases are induced in the alloy during heating and cooling processes. In the present study, a series of W heavy alloy containing various W particle volumes of 0 to 90% is made to investigate the residual stress taking place during cooling process. The CTE and residual stress of the series of alloy are measured by dilatometer and X-ray diffractometer. The residual stress of W particle is in compressive stress irrespective of W particle vol% and tends to increase with decreasing W particle vol% while that of the matrix phase is in tensile stress. The measured residual stress of W particle is about a third of calculated thermal stress. The influence of W particle vol% on the residual stress of W heavy alloy is discussed in terms of the deformation behaviors of W particle and matrix phase.

  • PDF

Study on the Stress Singularity of Interface Crack by using Boundary Element Method (경계요소법을 이용한 계면균열의 응력특이성에 관한 고찰)

  • Cho, Chong-Du;Kwahk, Si-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.197-204
    • /
    • 1999
  • The boundary element method was used for studying singularities of an interface crack with contact zones. The iterative procedure is applied to estimate the contact zone size. Because the contact zone size was extremely small in a tension field, a large number of Gaussian points were used for numerical integration of the Kernels. Stress extrapolation method and J-integral were used ofr determining stress intensity factors. When the interface crack was assumed to have opened tips, oscillatory singularities appear near the tips of the interface crack. But the interface crack with contact zone which Comninou suggested had no oscillatory behavior. The contact zone size under shear loading was much larger than that under tensile. The stress intensity factors computed by stress extrapolation method were close to those of Comninou's solution. And the stress intensity factor evaluated by J-integral was similar to that by stress extrapolation method.

  • PDF

Prediction of Surface Residual Stress of Multi-pass Drawn Steel Wire Using Numerical Analysis (수치해석을 이용한 탄소강 다단 신선 와이어 표면 잔류응력 예측)

  • Lee, S.B.;Lee, I.K.;Jeong, M.S.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2017
  • The tensile surface residual stress in the multi-pass drawn wire deteriorates the mechanical properties of the wire. Therefore, the evaluation of the residual stress is very important. Especially, the axial residual stress on the wire surface is the highest. Therefore, the objective of this study was to propose an axial surface residual stress prediction model of the multi-pass drawn steel wire. In order to achieve this objective, an elastoplastic finite element (FE) analysis was carried out to investigate the effect of semi-die angle and reduction ratio of the axial surface residual stress. By using the results of the FE analysis, a surface residual stress prediction model was proposed. In order to verify the effectiveness of the prediction model, the predicted residual stress was compared to that of a wire drawing experiment.

An Evaluation of Residual Stress Redistribution in the Welding Residual Stress Field Caused by Fatigue Crack Propagation by Finite Element Method (용접잔류응력장에서 피로균열의 전파에 따른 잔류응력 재분포에 대한 해석적 평가)

  • Park, Eung-Joon;Kim, Eung-Joon
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.92-96
    • /
    • 2008
  • An investigation was performed to predict residual stress redistribution for the crack propagation initially through tensile residual stress field. The analytical method, which is based on Dugdale model by finite element analysis using elastic analysis method considering the superposition principle, was proposed to estimate the redistribution of residual stress caused by crack propagation. The various aspect of distribution of residual stress caused by crack propagation was examined based on the configuration change of specimen. The analysis results show that the aspect of redistribution of residual stress caused by crack propagation depends on the width of the specimen provided that the initial distribution of residual stress is identical.

Analysis of Residual and Applied Stresses of Thin-walled U tubes (얇은 두께로 된 U 전열관의 잔류응력 및 부하응력 해석)

  • 김우곤;김대환;류우석;국일현;김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.163-169
    • /
    • 1999
  • Residual stresses causing stress corrosion cracking (SCC) of thin-walled steam generator U tubes were investigated. The residual stresses were measured by hole drilling methods, and the applied stresses resulting from the internal pressure and the temperature gradient in the steam generator were estimated theoretically. In U-bent regions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319MPa in axial direction at $\phi$= $0^{\circ}$ in position. Maximum tensile residual stress of 170MPa was found to be at the flank side at position of $\phi$= $90^{\circ}$, i.e., at apex region. Hoop stress due to the pressure and temperature differences between primary and secondary side were analyzed to be 76 MPa and 45 MPa, respectively.

  • PDF