• Title/Summary/Keyword: Tensile Stress

Search Result 2,795, Processing Time 0.029 seconds

Hybrid Photoelastic Stress Analysis Around a Central Crack Tip in a Tensile Loaded Plate Using Isochromatic Data (등색프린지 데이터를 이용한 인장하중 판재 중앙 균열선단 주위의 하이브리드 광탄성 응력장 해석)

  • Baek, Tae-Hyun;Chen, Lei
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1200-1207
    • /
    • 2007
  • An experimental test is presented for photoelastic stress analysis around a crack tip in tensile loaded plate. The hybrid method coupling photoelastsic fringe inputs calculated by finite element method and complex variable formulations involving conformal mappings and analytical continuity is used to calculate full-field stress around the crack tip in uniaxially loaded, finite width tensile plate. In order to accurately compare calculated fringes with experimental ones, both actual and regenerated photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Regenerated fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within three percent compared with ones obtained by empirical equation and finite element analysis.

Effect of Similar Metal Weld & Preemptive Weld Overlay On Residual Stress of Repair Weldment In Surge Nozzle (고리 원전 밀림관 노즐의 동종용접과 예방용접 Overlay가 보수용접 잔류응력에 미치는 영향)

  • Oh, Chang-Young;Song, Tae-Kwang;Shim, Kwang-Bo;Kim, Ji-Soo;Kim, Yun-Jae;Lee, Kyung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.557-564
    • /
    • 2009
  • Welding residual stress is occurred after welding process. Tensile residual stress is one factor of PWSCC. Repair welding usually happened during the manufacturing welding process. Repair welds cause strong tensile residual stress. In PWR, Repair weldments made by Alloy 82/182 is susceptible to PWSCC caused by tensile stress, material and environment. Therefore, mitigation of welding residual stress in weldments is important for reliable operating. PWOL is one of the methods for mitigation and verified for over twenty years. In this paper, residual stress distribution of repaired weldments and the effect of PWOL on mitigation is examined for surge nozzle.

Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.458-466
    • /
    • 2020
  • The purpose of this experimental research is to evaluate the compressive and tensile behaviors of high performance hybrid fiber reinforced concrete(HPHFRC) using amorphous steel fiber(ASF) and polyamide fiber(PAF). For this purpose, the HPHFRCs using ASF and PAF were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively. And then the compressive and tensile behaviors such as the compressive strength, compressive toughness, direct tensile strength, and stress-strain characteristics under compressive and tensile tests were estimated. It was observed from the test results that the compressive strength of HPHFRC was slightly decreased than that of plain concrete, but the compressive toughness, compressive toughness ratio, and direct tensile strength of HPHFRC increased significantly. Also, it was revealed that the plain concrete showed brittle fracture after the maximum stress from the stress-strain curves, but HPHFRC showed strain softening.

Effects of Cryogenic Treatment Cycles on Residual Stress and Mechanical Properties for 7075 Aluminum Alloy (극저온 열처리가 7075 알루미늄 합금의 잔류응력과 기계적 특성에 미치는 영향)

  • Kim, Hoi-Bong;Jeong, Eun-Wook;Ko, Dae-Hoon;Kim, Byung-Min;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • In this study, the effects of cryogenic treatment cycles on the residual stress and mechanical properties of 7075 aluminum alloy (Al7075) samples, in the form of a tube-shaped product with a diameter of 500 nm, were investigated. Samples were first subjected to solution treatment at $470^{\circ}C$, followed by cryogenic treatment and aging treatment. The residual stress and mechanical properties of the samples were systematically characterized. Residual stress was measured with a cutting method using strain gauges attached on the surface of the samples; in addition, tensile strength and Vickers hardness tests were performed. The detailed microstructure of the samples was investigated by transmission electron microscopy. Results showed that samples with 85 % relief in residual stress and 8% increase in tensile strength were achieved after undergoing three cycles of cryogenic treatments; this is in contrast to the samples processed by conventional solution treatment and natural aging (T4). The major reasons for the smaller residual stress and relatively high tensile strength for the samples fabricated by cryogenic treatment are the formation of very small-sized precipitates and the relaxation of residual stress during the low temperature process in uphill quenching. In addition, samples subjected to three cycles of cryogenic treatment demonstrated much lower residual stress than, and similar tensile strength compared to, those samples subjected to one cycle of cryogenic treatment or artificial aging treatment.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION IN ROOT-END RESECTED TEETH (유한요소법을 이용한 치근단절제술후 근첨의 응력분포에 관한 연구)

  • Lee, Se-Joon;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.163-174
    • /
    • 1998
  • The purpose of this study is to evaluate the distribution of stress in the root end resected teeth. The finite element method was used to compare stresses along the root and retrograde filling material in seven two-dimensional models of mandibular 2nd premolar. Each model was endodontic treatment and gold crown' restoration. Each model divided with amagam core restoration or gold casting post restoration. Thus each model divided with shape of root end resection, depth of retropreparation and exposure length of root in the bony cavity. The seven models were classified as in the table 1 below. A load of 500N was applied $45^{\circ}$ diagonally on the lingual slope of the buccal cusp. These mode were analyzed with two dimensional finite element methods. The results of this study were as follows : 1. The maximum tensile stress along the inner canal wall was shown on the model 7. 2. When the model 1 was compared with the model 5, the maximum tensile stress along the inner canal wall showed the model 1. 3. Less equivalent stress was shown on the model 6 and more equivalent stress was shown on the model 4. 4. More shear stress was shown on the retrograde filling material of the model 7. 5. The models with increased length of exposed root in the bony cavity demonstrated a gradual increase to the tensile stress in X direction which occurred approximately a boundary between the bone and exposed root in' the bony cavity. 6. The model which had a case of matching the apex of post and a boundary between the bone and exposed root in the bony cavity demonstrated more increase tensile stress in X direction than other models.

  • PDF

Biaxial Tensile Behaviors of Elastomeric Polymer Networks

  • Shinzo, Kohjiya
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.175-179
    • /
    • 2003
  • For the total description of mechanical behaviors of elastomers, it is necessary to know the so-called rheological constitutive equation i.e. the strain-energy density function (W) in case of elastomers, which necessitates biaxial tensile results of elastic body. This paper first describes the experimental results of biaxial tensile measurements on poly(siloxane) model networks. W was estimated from its differential form i.e. the $1^{st}$ differential of W is stress. The W was found to reproduce the experimental stress-strain results, and the W estimated for silica filled poly(siloxane) networks suggest a different behavior between conventional precipitated silica and in situ formed silica. The difference suggests the different surface property of the two silicas.

Rheological Properties of Cooked Noodles with Different Starch Content Using Tensile Tests

  • Kim, Su-Kyoung;Lee, Seung-Ju
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.1013-1018
    • /
    • 2009
  • Several rheological terms were introduced to estimate the properties of cooked noodles with different starch content using tensile tests. Ring-shaped specimens were prepared by connecting both ends of the noodle strip before cooking. Hencky strain and rate, as well as true stress were applied in constant deformation tests. The elastic region on the curves of strain vs. stress was not clearly identified. Strain hardening in the subsequent plastic region was more prominent in low-starch noodles. Elongational viscosities at lower strain rates were used to differentiate noodles with different starch content, representing the dominant effect of protein content in the range of lower strain rates. In stress relaxation tests, the reciprocal of Peleg's constant $K_1$ (initial decay rate) and $K_2$ (asymptotic level) increased and decreased respectively, with an increase in starch content. This indicated that addition of starch contributed to the noodles becoming viscous liquid rather than elastic solid.

Flow Stress of HSLA Steel by Heat Treatment (열처리한 HSLA 강의 유동특성)

  • Kim J. M.;Choi N. J.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.178-181
    • /
    • 2004
  • Heat treatment is one of important manufacturing process that determine the quality of the products. Because of a difference of mechanical property by heat treatment, It is necessary to This papers presents flow stress and yield point through tensile test. The goal of this study is to obtain the data of flow stress and yield point at martensite, bainite, ferrite/pearlite phase structure using SCM420, SCr420. The result of tensile test is satisfied and is expected to develop an available FEM analysis.

  • PDF

Stress intensity factors for an interface crack between an epoxy and aluminium composite plate

  • Itou, S.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.99-109
    • /
    • 2007
  • A cracked composite specimen, comprised of an epoxy and an aluminium plate, was fractured under a tensile load. In this paper, two crack configurations were investigated. The first was an artificial center crack positioned in the epoxy plate parallel to the material interface. The other was for two edge cracks in the epoxy plate, again, parallel to the interface. A tensile test was carried out by gradually increasing the applied load and it was verified that the cracks always moved suddenly in an outward direction from the interface. The d/a ratio was gradually reduced to zero, and it was confirmed that the maximum stress intensity factor value for the artificial center crack, $K_{{\theta}{\theta}}^{max}$, approached that of an artificial interface crack,$K_{{\theta}{\theta}}^{ifc\;max}$ (where: 2a is the crack length and d is the offset between the crack and interface). The same phenomenon was also verified for the edge cracks. Specifically, when the offset, d, was reduced to zero, the maximum stress intensity factor value, $K_{{\theta}{\theta}}^{max}$, approached that of an artificial interface edge crack.

Study on B-H Curve Characteristic of Magnetic Substance According to Tensile Stress (인장 응력에 따른 자성체의 B-H Curve 특성 연구)

  • Kim, Jong-Wang;Kim, Sang-Hyun;Yang, Hoon-Suk;Kim, Ji-Ho;Jung, Hyun-Ju;Lee, Hyang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.417-421
    • /
    • 2015
  • In this paper, study for B-H curve characteristics of the magnetic material due to tensile stresses of submarine for magnetic silence. For the experiment, made the sample of the material of AH36 and made to a B-H curve Tracer. In addition, design and made a system of stress by the weight in order to apply a tensile stress, it was possible to obtain results for the change of the magnetization.