Biaxial Tensile Behaviors of Elastomeric Polymer Networks

  • Published : 2003.06.30

Abstract

For the total description of mechanical behaviors of elastomers, it is necessary to know the so-called rheological constitutive equation i.e. the strain-energy density function (W) in case of elastomers, which necessitates biaxial tensile results of elastic body. This paper first describes the experimental results of biaxial tensile measurements on poly(siloxane) model networks. W was estimated from its differential form i.e. the $1^{st}$ differential of W is stress. The W was found to reproduce the experimental stress-strain results, and the W estimated for silica filled poly(siloxane) networks suggest a different behavior between conventional precipitated silica and in situ formed silica. The difference suggests the different surface property of the two silicas.

Keywords

References

  1. M. J. Mooney, J Appl. Phys., 11, 582 (1940)
  2. L. R. G. Treloar, Trans. Faraday Soc., 39, 36 (1943)
  3. R. S. Rivlin, D. W. Saunders, Philos. Trans. Roy. Soc., A243, 251 (1951)
  4. L. R. G. Treloar, ''The Physics of Rubber Elasticit y", $3^{rd}$ ed., Oxford Univ. Press (1975)
  5. S. Kawabata, H. Kawai, Adv. Polym Sci., 24, 89 (1977)
  6. Erman, J. E. Mark, 'Structure and Properties of Rubberlike Networks', Oxford Univ. Press (1997)
  7. M. Gottlieb, R. J. Gaylord, 'Experimental tests of entanglement models of rubber elasticity: 1. Uniaxial extension-compression', Polymer, 24, 1644 (1983) https://doi.org/10.1016/0032-3861(83)90186-6
  8. P. G. Higgs, R. J. Gaylord, 'Slip-links, hoops and tubes: tests of entanglement models of rubber elasticity', Polymer, 31, 70 (1990) https://doi.org/10.1016/0032-3861(90)90351-X
  9. B. Meissne, 'Tensile stress-strain behaviour of rubberlike networks up to break. Theory and experimental comparison', Polymer, 41, 7827-7841 (2000) https://doi.org/10.1016/S0032-3861(00)00114-2
  10. T. kawamura, K. Urayama, S. Kohjiya, 'Multiaxial Deformations of End-Linked Poly(dimethylsiloxane) Networks. I. Phenomenological Approach to Strain Energy Density Function Kawamura' Macromolecules, 34, 8252-8260 (2001) https://doi.org/10.1021/ma002165y
  11. S. Kohjiya, Y. Ikeda, Rubber Chem. Technol., 73, 534 (2000)
  12. S. Kohjiya, K. Murakami, S. Iio, T. Tanahashi, Y. Ikeda, Rubber Chem. Technol., 74, 16 (2001)
  13. K. Murakami, S. io, T. anahashi, S. ohjiya, K. ajiwara, Y. keda, Kaut. Gummi Kunst., 54, 668 (2001)
  14. K. ajiwara, Y. ameda, Y. keda, H. rakawa, T. awamura, K. rayama, S. ohjiya, Rubber Chem. Technol., submitted
  15. S. Kawabata, M. Matsuda, K. Tei, H. Kawai, 'Experimental survey of the strain energy density function of isoprene rubber vulcanizate' Macromolecules, 14, 154-162 (1981) https://doi.org/10.1021/ma50002a032