DOI QR코드

DOI QR Code

Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete

고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동

  • Kwon, Soon-Oh (Quality Management Team, Sampyo P&C) ;
  • Bae, Su-Ho (Department of Civil Engineering, Andong National University) ;
  • Lee, Hyun-Jin (Department of Civil Engineering, Andong National University)
  • Received : 2020.10.12
  • Accepted : 2020.11.05
  • Published : 2020.12.30

Abstract

The purpose of this experimental research is to evaluate the compressive and tensile behaviors of high performance hybrid fiber reinforced concrete(HPHFRC) using amorphous steel fiber(ASF) and polyamide fiber(PAF). For this purpose, the HPHFRCs using ASF and PAF were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively. And then the compressive and tensile behaviors such as the compressive strength, compressive toughness, direct tensile strength, and stress-strain characteristics under compressive and tensile tests were estimated. It was observed from the test results that the compressive strength of HPHFRC was slightly decreased than that of plain concrete, but the compressive toughness, compressive toughness ratio, and direct tensile strength of HPHFRC increased significantly. Also, it was revealed that the plain concrete showed brittle fracture after the maximum stress from the stress-strain curves, but HPHFRC showed strain softening.

이 연구의 목적은 비정질 강섬유와 폴리아미드 섬유를 이용한 고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동을 평가하는 것이다. 이를 위하여 목표 압축강도 40MPa 및 60MPa 각각에 대해서 비정질 강섬유와 폴리아미드 섬유를 총 부피비로 1.0% 혼입한 고성능 하이브리드 섬유보강 콘크리트를 제작한 후 압축강도, 압축인성, 직접인장강도 및 응력-변형률 특징 등의 압축 및 인장 거동을 평가하였다. 그 결과, 고성능 하이브리드 섬유보강 콘크리트의 압축강도는 플레인 콘크리크보다 다소 감소하였으나, 압축인성, 압축인성 비, 직접인장강도는 크게 증가하는 것으로 나타났다. 또한 압축 및 인장 시험시 플레인 콘크리트는 최대응력 이후 취성파괴를 나타냈으나, HPHFRC는 변형연화 현상을 나타내어, 압축 및 인장 거동이 크게 개선되는 것으로 나타났다.

Keywords

References

  1. Botta, W.J., Berger, J.E., Kiminami, C.S., Roche, V., Nogueira, R.P., Bolfarini, C. (2014). Corrosion resistance of Fe-based amorphous alloys, Journal of Alloys and Compounds, 586(1), S105-S110. https://doi.org/10.1016/j.jallcom.2012.12.130
  2. Hwang, J.Y. (2015). Microstructure and Soft Magnetic Properties of Fe80P20-xSix (X=4.5-6.5 at.%) Amorphous Alloy, Master's Thesis, Kyungpook National University [in Korean].
  3. Jang, S.J., Kang, S.W., Yun, H.D. (2015). Cracking behavior and flexural performance of RC beam with strain hardening cement composite and high-strength reinforcing bar, Journal of the Korea Concrete Institute, 27(1), 37-44 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.1.037
  4. Jeon, J.K., Kim, W.S., Yoon, J.H., Jeon, C.K. (2014). An experimental study on the flexural characteristics of polyamide fiber reinforced concrete, Proceedings of the Korea Concrete Institute, 26(1), 379-380 [in Korean].
  5. JSCE-SF5. (1984). Method of Test for Compressive Strength and Compressive Toughness of Steel Fibre-Reinforced Concrete, Concrete Library of JSCE.
  6. KS F 2403. (2014). Standard Test Method for Making and Curing Concrete Specimens, KS Standard, Korea [in Korean].
  7. KS F 2405. (2010). Standard Test Method for Compressive Strength of Concrete, KS Standard, Korea [in Korean].
  8. Ku, D.O., Kim, S.D., Kim, H.S. (2014). Flexural performance characteristics of amorphous steel fiber-reinforced concrete, Journal of the Korea Concrete Institute, 26(4), 483-489 [in Korean]. https://doi.org/10.4334/JKCI.2014.26.4.483
  9. Lawer, J.S., Zampini, D., Shah, S.P. (2000). Permeability of cracked hybrid fiber-reinforced under load, ACI Material Journal, 99(4), 379-385.
  10. Moon, J.W. (2016). Mechanical Properties, Corrosion Resistance and Thermal Neutron Shielding Efficiency of Fe72-xB25Mo3Crx (x=0, 5, 10, 15, 20) High Boron Amorphous Ribbons, Master's Thesis, Kyungpook National University [in Korean].
  11. Nam, J.S., Kim, G.Y., Lim, C.H., Yun, K.H., Kim, M.H., Jeon, J.K. (2010). Mechanical properties of tunnel shotcrete with polyamide fiber ratio, Proceedings of the Korea Concrete Institute, 22(2), 163-164 [in Korean].
  12. Nataraja, M.C., Dhang, N., Gupta, A.P. (1999). Stress-strain curves for steel-fiber reinforced concrete under compression, Cement and Concrete Composites, 21, 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
  13. Poon, C.S., Shui, Z.H., Lam, L. (2004). Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures, Cement. Concrete, Res., 34, 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
  14. Quan, C.X., Stroeven, P. (2000). Fracture properties of concrete reinforced with steel-polyethylene hybrid fibers, Cement and Concrete Composites, 22(5), 651-658.
  15. Strong, A.B. (2006). Plastics : Materials and Processing 3rd Edition, PEARSON Prentce Hall.
  16. Won, J.P., Park, C.G. (2006). Performance and application of hybrid fiber reinforced concrete, Magazine of the Korea Concrete Institute, 18(1), 22-27.