• 제목/요약/키워드: Tensile Stress

검색결과 2,798건 처리시간 0.038초

링 시험편에 의한 인장강도시험의 수치해석 (Numerical Simulation of Tensile Strength Test by Ring-type Specimen)

  • 진연호;양형식;박철환
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2000년도 암반공학문제의 수치해석(Numerical Analysis in Rock Engineering Problems)
    • /
    • pp.63-66
    • /
    • 2000
  • 링 시험펀의 크기와 편심에 따른 응력변화를 FLAC으로 분석하였다. 분석 결과 중공의 크기가 일정한 범위에서만 안정된 값을 얻을 수 있었다. 중공의 크기 오차를 줄이기 위한 상대 공반경은 약 0.3이 적절할 것으로 평가되었다. 한편 중공의 관심 오차가 커지면 응력분포가 불균일하게 되어 정확한 인장강도 산정이 어려운 것으로 사료되었다. 적절한 인장강도를 얻기 위해 중공의 편차는 일정한 정도로 한정하여야 할 것으로 생각된다. 편심으로 인한 오차를 10% 이내로 제한하기 위해서는 중공의 중심은 가압방향에 수평한 방향으로 3%, 수직한 방향으로는 10% 이내가 되어야 하는 것으로 분석되었다.

  • PDF

링 시험편에 의한 인장강도시험의 수치해석 (Numerical Simulation of Tensile Strength Test by Ring-type Specimen)

  • 진연호;양형식;박철환
    • 터널과지하공간
    • /
    • 제10권3호
    • /
    • pp.316-319
    • /
    • 2000
  • 링 시험편의 크기와 편심에 따른 응력변화를 FLAC으로 분석하였다. 분석 결과 중공의 크기가 일정한 범위에서만 안정된 값을 얻을 수 있었다. 중공의 크기 오차를 줄이기 위한 상대 공반경은 약 0.3이 적절할 것으로 평가되었다. 한편 중공의 편심 오차가 커지면 응력분포가 불균일하게 되어 정확한 인장강도 산정이 어려운 것으로 사료되었다. 적절한 인장강도를 얻기 위해 중공의 편차는 일정한 정도로 한정하여야 할 것으로 생각된다. 편심으로 인한 오차를 10% 이내로 제한하기 위해서는 중공의 중심은 가압방향에 수평한 방향으로 3%, 수직한 방향으로는 10% 이내가 되어야 하는 것으로 분석되었다.

  • PDF

Effects of Length and Grade on In-grade Tensile Strength and Stiffness Properties of Radiata Pine Timber

  • Tsehaye, Addis;Buchanan, A.H.;Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권2호
    • /
    • pp.16-23
    • /
    • 1998
  • This paper examines the effects of specimen length and grade on the strength and stiffness properties of structural timber of radiata pine. The tensile strength and modulus of elasticity of 1,902 machine-graded boards with 3.15- and 1.62-m clear span lengths, were determined using a horizontal tension test machine. The mean failure and characteristic stress values for tensile strength show an extremely high dependency on test specimen length. The mean and characteristic values of both modulus of elasticity and tensile strength show significant dependency on machine stress grades.

  • PDF

YBCO CC테이프 임계전류의 인장변형률 특성 (Tensile Strain Characteristics of Critical Current in YBCO Coated Conductors)

  • 신형섭;김기현;오상수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.274-275
    • /
    • 2005
  • The tensile strain dependency of critical current in YBCO coated conductors was examined at 77K and in the self magnetic field. A commercially available YBCO sample with Cu stabilizer layer was supplied. There existed a peak in the relation between the Ie and tensile strain, and the reversible variation of $I_c$ with applied tensile strain was found. In the neutral axis Ni alloy RABiTS-$Y_2O_3$/YSZ/$CeO_2$ buffered YBCO tape, the $I_c$ recovered reversibly until the applied strain reached to about 0.5%, representing that a significant residual compressive strain induced during cooling to 77 K influenced the axial strain tolerance of YBCO conductors. To investigate the strain and stress influence on the $I_c$, the stress-strain characteristics of YBCO conductors measured at 77 K were discussed.

  • PDF

FEGM을 이용한 자동차용 플라스틱의 진응력-변형률 선도 도출 (Determination of True Stress-Strain Curves of Auto-body Plastics Using FEGM)

  • 박충회;김진성;허훈;안창남;최석진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2009
  • The plastics are widely utilized in the inside of vehicles. The dynamic tensile characteristics of auto-body plastics are important in a prediction of deformation mode of the plastic component which undergoes the high speed deformation during car crash. This paper is concerned with the dynamic tensile characteristics of the auto-body plastics at intermediate strain rates. Quasi-static tensile tests were carried out at the strain rate ranged from 0.001/sec to 0.01/sec using the static tensile machine(Instron 5583). Dynamic tensile tests were carried out at the strain rate ranged from 0.1/sec to 100/sec using the high speed material testing machine developed. Conventional extensometry method is no longer available for plastics, since the deformation of plastic is accompanied with localized deformation. In this paper, quasi-static and dynamic tensile tests were performed using ASTM IV standard specimens with grids and images from a high speed camera were analyzed for strain measurement. True stress-strain relations and the actual strain rates at each deformation step were obtained by processing load data and deformation images, assuming the plastics to deform uniformly in each grid.

  • PDF

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

토글식 사출성형기의 타이바 연신율 평가 (Tie-bar Elongation Evaluation of Toggle Type Injection Molding Machine)

  • 정현석;유중학
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.672-676
    • /
    • 2012
  • This paper studies the relation between the deformation of platen caused by clamping force, the bending stress and elongation at the tie-bar in injection molding machine of toggle type. These data are analyzed through analytical molding and numerical approach by tensile tester. The effect of bending stress on the stress concentration of teeth and nut system is also analyzed by 2 dimensional numerical approach. The bending stress of tie-bar caused by platen deformation becomes less than 20% of average tensile stress. And the effect of bending stress on stress concentration at teeth and nut system of tie-bar is found to be small.

금속소재의 고변형률 영역 유동응력선도 평가 (Evaluation of Flow Stress of Metal up to High Strain)

  • 이상곤;이인규;이성윤;이성민;정명식
    • 소성∙가공
    • /
    • 제29권6호
    • /
    • pp.316-322
    • /
    • 2020
  • The flow stress curve is usually determined via uniaxial tensile or simple compression test. However, the flow stress curve up to high strain cannot be obtained using these two tests. This study presents a simple method for obtaining the flow stress curve up to high strain via FE analysis, a simple compression test, and an indentation test. In order to draw the flow stress curve up to high strain, the indentation test was carried out with the pre-stained specimen using the simple compression test. The flow stress curve of Al6110 was evaluated up to high strain using the proposed method, and the result was compared with the flow stress curve of the uniaxial tensile test of the initial material.

스테인리스강에 대한 전자빔 용접 잔류응력 예측을 위한 열원 변수 민감도 해석 (Sensitivity Analysis of Heat Source Parameter for Predicting Residual Stress Induced by Electron Beam Welding)

  • 박신제;김훈태;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.61-68
    • /
    • 2022
  • Accurate evaluation of residual stress is important for stress corrosion cracking assessment. In this paper, electron beam welding experiment is simulated via finite element analysis and the sensitivity of the parameters related to the combined heat source model is investigated. Predicted residual stresses arecompared with measured residual stresses. It is found that the welding efficiency affects the size of the tensile residual stress area and the magnitude of maximum longitudinal residual stress. It is also found that the parameter related to the ratio of energy distributed to the two-dimensional heat source has little effect on the size of tthe tensile residual stress area, but affects the size of the longitudinal residual stress in the center of the weld.

맞대기 용접 강판재에서 압연 및 잔류응력에 의한 피로거동 (Fatigue Behavior with Respect to Rolling and Residual Stress in Butt-welded Steel Plate)

  • 이용복;오병덕;김성엽
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.826-832
    • /
    • 2006
  • For the improvement of safety and endurance in welded steel structure, it is needed to consider welding residual stress distribution and rolling directional characteristics of materials. In this study, it was investigated experimentally about characteristics of fatigue crack propagation according to welding residual stress and rolling in FCAW(flux cored arc welding) butt-jointed steel plates. SS400 steel plates of 3mm thickness were selected and tested for this study. When the angles between tensile loading direction and rolling direction in welded materials are increased from $0^{\circ}\;to\;90^{\circ}$, their fatigue crack propagation rates are increased. These results are same as predicted increments of fatigue crack propagation rate when stress ratio is increased from 0 to 0.5. When the angles of rolling direction and welding direction to tensile loading direction are $0^{\circ}\;and\;90^{\circ}$ respectively, fatigue crack propagation rate in welded material is lowest.