Browse > Article
http://dx.doi.org/10.20466/KPVP.202.18.2.061

Sensitivity Analysis of Heat Source Parameter for Predicting Residual Stress Induced by Electron Beam Welding  

Shin Je Park (고려대학교 기계공학부)
Hune Tae Kim (한국수력원자력 중앙연구원)
Yun Jae Kim (고려대학교 기계공학부)
Publication Information
Transactions of the Korean Society of Pressure Vessels and Piping / v.18, no.2, 2022 , pp. 61-68 More about this Journal
Abstract
Accurate evaluation of residual stress is important for stress corrosion cracking assessment. In this paper, electron beam welding experiment is simulated via finite element analysis and the sensitivity of the parameters related to the combined heat source model is investigated. Predicted residual stresses arecompared with measured residual stresses. It is found that the welding efficiency affects the size of the tensile residual stress area and the magnitude of maximum longitudinal residual stress. It is also found that the parameter related to the ratio of energy distributed to the two-dimensional heat source has little effect on the size of tthe tensile residual stress area, but affects the size of the longitudinal residual stress in the center of the weld.
Keywords
Electron beam weld; Residual stress; Finite element analysis; Stainless steel;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lam, P. S., Duncan, A. J., and Sindelar, R. L., 2019, "Crack growth rate and large plate demonstration of chloride-induced stress corrosion cracking in spent nuclear fuel storage canisters," U.S. Savannah River Site, Aiken, SRNL-STI-2019-00561.
2 Liu, C., Zhang, J., Wu, B., and Gong, S., 2012, "Numerical investigation on the variation of welding stresses after material removal from a thick titanium alloy plate joined by electron beam welding." Materials and Design, Vol. 34, pp. 609-617. doi: https://doi.org/10.1016/j.matdes.2011.05.014   DOI
3 Cao, J., Gharghouri, M. A., and Nash, P, 2016, "Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates." J. Mater. Process. Tech., Vol. 237, pp. 409-419. doi:https://doi.org/10.1016/j.jmatprotec.2016.06.032   DOI
4 Liu, C., Wu, B., and Zhang, J. X., 2010, "Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding." Metall. Mater. Trans. B, Vol. 41, No. 5, pp. 1129-1138. doi:https://doi.org/10.1007/s11663-010-9408-y   DOI
5 Cho, J. R., Conlon, K. T., and Reed, R. C., 2003, "Residual stresses in an electron beam weld of Ti-834: Characterization and numerical modeling." Metall. Mater. Trans. A, Vol. 34, No. 12, pp. 2935-2946. doi: https://doi.org/10.1007/s11661-003-0193-y   DOI
6 Smith, D. J., Zheng, G., Hurrell, P. R., Gill, C. M., Pellereau, B. M. E., Ayres, K., ... and Kingston, E., 2014, "Measured and predicted residual stresses in thick section electron beam welded steels." Int. J. Press. Ves. Pip., Vol. 120, pp. 66-79. doi:https://doi.org/10.1016/j.ijpvp.2014.05.001   DOI
7 Kundu, A., Bouchard, P. J., Kumar, S., Venkata, K. A., Francis, J. A., Paradowska, A., ... and Truman, C. E., 2013, "Residual stresses in P91 steel electron beam welds." Sci. Technol. Weld. Joi. Vol. 18, No. 1, pp. 70-75. doi:https://doi.org/10.1179/1362171812Y.0000000076   DOI
8 Shen, X., Gao, K., and Dong, S., 2020, "Simulation and analysis of electron beam welding residual stress in thin-walled high-temperature alloy aeroengine structures." Int. J. Adv. Manuf. Tech. Vol. 107, No. 9, pp. 3953-3966. doi:https://doi.org/10.1007/s00170-020-05276-z   DOI
9 Feng, G., Wang, Y., Luo, W., Hu, L., and Deng, D., 2021, "Comparison of welding residual stress and deformation induced by local vacuum electron beam welding and metal active gas arc welding in a stainless steel thick-plate joint." J. Mater. Res. Technol., Vol. 13, pp. 1967-1979. doi:https://doi.org/10.1016/j.jmrt.2021.05.105   DOI
10 Lundback, A., and Runnemalm, H., 2005, "Validation of three-dimensional finite element model for electron beam welding of Inconel 718". Sci. Tech. Weld. Joi., Vol. 10, No. 6, pp. 717-724. doi:https://doi.org/10.1179/174329305X48347   DOI
11 Ferro, P., Zambon, A., and Bonollo, F., 2005, "Investigation of electron-beam welding in wrought Inconel 706-experimental and numerical analysis." Mat. Sci. Eng. A-Struct., Vol. 392, No. 1-2, pp. 94-105. doi:https://doi.org/10.1016/j.msea.2004.10.039   DOI
12 Li, Y., Zhao, Y., Li, Q., Wu, A., Zhu, R., and Wang, G., 2017, "Effects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy joints." Mater. Design, Vol. 114, pp. 226-233. doi: https://doi.org/10.1016/j.matdes.2016.11.083   DOI
13 Song, T. K., Bae, H. Y., Kim, Y. J., Lee, K. S., and Park, C. Y., 2008, "Sensitivity analyses of finite element method for estimating residual stress of dissimilar metal multi-pass weldment in Nuclear power plant." Transactions of the Korean Society of Mechanical Engineers A, Vol. 32, No. 9, pp. 770-781. doi:https://doi.org/10.3795/KSME-A.2008.32.9.770   DOI
14 Lima, A. S., Nascimento, A. M. D., Abreu, H. F. G. D., and de Lima-Neto, P., 2005, "Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347". J. Mater. Sci., Vol. 40, No. 1, pp. 139-144. doi:https://doi.org/10.1007/s10853-005-5699-9   DOI
15 Bunn, M. G., Weeks, J., Holdren, J. P., MacFarlane, A. M., Pickett, S. E., Suzuki, A., and Suzuki, T., 2001, Interim Storage of Spent Nuclear Fuel: A Safe, Flexible, and Cost-Effective Approach to Spent Fuel Management.
16 Romanato, L. S., 2011, Advantages of dry hardened cask storage over wet storage for spent nuclear fuel.
17 Feng, Z. (Ed.)., 2005, Processes and mechanisms of welding residual stress and distortion. Elsevier.
18 Weglowski, M. S., Blacha, S., and Phillips, A., 2016, Electron beam welding-techniques and trends-review. Vacuum, Vol. 130, pp. 72-92. doi:https://doi.org/10.1016/j.vacuum.2016.05.004   DOI
19 Soh, N. H., Oh, G. J., Huh, N. S., Lee, S. H., Park, H. B., Lee, S. G., ... & Kim, Y. J. 2012. "Effect of Finite Element Analysis Parameters on Weld Residual Stress of Dissimilar Metal Weld in Nuclear Reactor Piping Nozzles." Trans. of the KPVP, Vol. 8, No. 1, pp. 8-18. doi:https://doi.org/10.20466/KPVP.2012.8.1.008   DOI
20 Bae, H. Y., Kim, Y. J., Kim, J. H., Lee, S. H., Lee, K. S., and Park, C. Y., 2014, "Three-dimensional finite element welding residual stress analysis of penetration nozzles: I-sensitivity of analysis variables." Int. J. Press. Ves. Pip., Vol. 114, pp. 1-15. doi:https://doi.org/10.1016/j.ijpvp.2013.11.006   DOI
21 sMokhtarishirazabad, M., Simpson, C., Kabra, S., Horne, G., Palmer, I., Moffat, A., ... and Mostafavi, M., 2021, "Evaluation of fracture toughness and residual stress in AISI 316L electron beam welds." Fatigue. Fract. Eng. M, Vol. 4, No. 8, pp. 2015-2032. doi:https://doi.org/10.1111/ffe.13472s   DOI
22 Feng, G., Wang, Y., Luo, W., Hu, L., and Deng, D., 2021, "Comparison of welding residual stress and deformation induced by local vacuum electron beam welding and metal active gas arc welding in a stainless steel thick-plate joint." J. Mater. Res. Technol., Vol. 13, pp. 1967-1979. doi:https://doi.org/10.1016/j.jmrt.2021.05.105   DOI