• Title/Summary/Keyword: Tensile Performance

Search Result 1,490, Processing Time 0.028 seconds

Numerical Study on Wire Strength Under Both Tension and Deflection for Use as Prestressing Steel (인장과 휨을 동시에 받는 프리스트레스 강선의 굴절인장성능 평가)

  • Kim, Jin-Kook;Seong, Taek-Ryong;Yang, Jun-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.147-153
    • /
    • 2019
  • The prestressing steel wire, which is applied a tension to reinforce the structure, is applied flexure simultaneously by the duct and the deviator. In order to evaluate the deflected tensile performance of the prestressing steel wire subjected to both tensile and flexural stresses, the numerical analysis for 600 cases with variables of wire diameters, mandrel diameters, and friction coefficient between mandrel and steel wire was performed. As the result of analysis, the larger the diameter of the steel wire was, the lower the deflected tensile performance was, and the effect decreased with the increase of the wire elongation. The effect of mandrel diameter and friction coefficient between mandrel and wire on the deflected tensile performance of the wire was very small. But the deflected tensile performance and the friction coefficient between mandrel and strand showed a relatively high correlation. Therefore, it is necessary to make enough large elongation to secure the deflected tensile performance. If there is a restriction on the elongation, it is necessary to reduce the diameter of the steel wire to an appropriate value, and to increase the friction between steel wires by adjusting the surface condition of the steel wire.

Experimental Study on the Material Characteristics of Glass Fiber Composties (유리섬유복합재료의 재료특성에 관한 실험적 연구)

  • Park, Jong-Myen;Seo, Hyun-Su;Kwon, Min-Ho;Lim, Jeong-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • In the study, tensile, compression and in-plane tests about longitudinal direction of glass fiber were performed. Also, to obtain the material properties of GFRP fabric composite, tensile test was performed. All test were performed by the test method of ASTM. Maximum compressive strength was smaller than the maximum tensile strength at the longitudinal direction test results. Elastic modulus of the tensile and compressive was almost similar at the compression test results in the longitudinal direction. Based on the GFRP fabric composite test results, GF91 was showed good performance at maximum compressive, maximum strain and elastic modulus.

Tensile Characterization of Ceramic Matrix Composites (CMCs) with Nondestructive Evaluation (NDE) Techniques

  • Kim, Jeongguk;Lee, Joon-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.190-194
    • /
    • 2003
  • Two different types of nondestructive evaluation (NDE) techniques were employed to investigate the tensile behavior of ceramic matrix composites (CMCs). Two NDE methods, ultrasonic testing (UT) and infrared (IR) thermography, were used to assess defects and/or damage evolution before and during mechanical testing. Prior to tensile testing, a UTC-scan and a xenon flash method were performed to obtain initial defect information in light of UT C-scans and thermal diffusivity maps, respectively. An IR camera was used for in-situ monitoring of progressive damages. The IR camera measured temperature changes during tensile testing. This paper has presented the feasibility of using NDE techniques to interpret structural performance of CMCs.

  • PDF

Clustering-based identification for the prediction of splitting tensile strength of concrete

  • Tutmez, Bulent
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.155-165
    • /
    • 2009
  • Splitting tensile strength (STS) of high-performance concrete (HPC) is one of the important mechanical properties for structural design. This property is related to compressive strength (CS), water/binder (W/B) ratio and concrete age. This paper presents a clustering-based fuzzy model for the prediction of STS based on the CS and (W/B) at a fixed age (28 days). The data driven fuzzy model consists of three main steps: fuzzy clustering, inference system, and prediction. The system can be analyzed directly by the model from measured data. The performance evaluations showed that the fuzzy model is more accurate than the other prediction models concerned.

Parametric Study on Test Method for Pull-off Strength of FRP Composite Material used in Strengthening RC Members (FRP 복합체의 콘크리트에 대한 접착강도 시험방법 변수 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.222-225
    • /
    • 2006
  • Pull-off test is widely used to evaluate bond performance between concrete and FRP composite. However, reliability of experiment result declines due to many difference between test methods of each national standards. This study analyzed problems of various existing test methods for pull-off test and suggested standardized test method. In addition, since tensile strength of concrete is smaller than bond strength of epoxy resin, maximum bond strength of epoxy resin shall be limited within tensile strength of concrete. Alternative testing method, therefore, which decrease FRP adhesion areas than concrete adhesion areas is suggested to widen test range of bond strength in pull-off test. In the experimental results, bond performance can be estimated up to two times of tensile strength of concrete by reducing FRP adhesion areas by 1/3.

  • PDF

An Expert System for Estimation of Fatigue Properties of Metallic Materials using Simple Tensile Data (금속재료의 피로특성 추정을 위한 전문가시스템)

  • Jeon, Woo-Soo;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.195-200
    • /
    • 2003
  • An expert system for estimation of fatigue properties from simple tensile data of material is developed, considering nearly all important estimation methods proposed so far, i.e., 7 estimation methods. The expert system is developed using an expert system shell, UNIK, and the knowledge base is constructed with production rules and frames. Forward chaining is employed as a reasoning method. The expert system has three major functions including the function to update the knowledge base. The performance of the expert system is tested using the 54 ${\sigma}-N$ curves consisting of 381 ${\sigma}-N$ data points obtained for 22 materials. It is found that the expert system developed has excellent performance especially for steel materials, and reasonably good for titanium alloys.

  • PDF

A Study on the Evaluation of Tensile Performance According to Pareral Jointing Methods of the Sheet Membrane Waterproofing System (방수시트의 평행접합방법에 따른 인장성능 평가연구)

  • Lee Jeoung-Yun;Oh Mi-Hyun;Kwak Kyu-Sung;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.39-44
    • /
    • 2004
  • A heat and room temperature construction method of asphalt have been mainly applying to rooftop waterproofing in concrete structure, and the rest construction method are sheet, membrane and mortar waterproofing construction method. In particular, joint method in sheet waterproof method is as overlap joint which on being reinforced with fiber and tape, have been applying for job site to mechanical fix using protection disk and anchorage and metal ironwork on the end of sheet. These construction method cause cutting off joint of sheet as behavior of structure according to repairs of sheet itself and thermal conduct, outdoor air environment. In conclusion, we analyzed and examined the application of various sheets and piece ashes about superior 'I' joint which divide from one and the other sheet and progressed about joint construction method of fixing method for overlap.

  • PDF

Study on tensile performance change by recycled materials of TPO sheet applied to rooftop and artificial ground Rootproofings (옥상 및 인공지반 방근공사에 적용되는 TPO시트의 재생 소재 적용에 따른 인장성능 변화 연구)

  • Kim, Sun-Do;Kim, Jin-Sung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.103-104
    • /
    • 2018
  • Recently, in addition to greening of roof and artificial soil, Rootproofing to prevent damage to the waterproof layer and structures by roots is recognized as an important task. Therefore, various related products and construction methods have been developed and applied in the field. However, in the case of synthetic polymer-based sheets most commonly used in domestic construction sites, Most are produced using 100% new materials that are not suitable for green trends such as resource conservation and environmental protection. Therefore, in this study, we developed TPO sheet using recycled material, which is a technology that can secure eco-friendliness by utilizing recycled resources. As a result of the evaluation of tensile performance of the TPO sheet according to the recycled material content, The tensile strength of the specimens with the recycled content of 50 ~ 70% was the highest, The elongation rate of the specimen with the recycled content of 30 ~ 40% was the best.

  • PDF

Mechanical characteristics of Macro-Fiber Reinforced Concrete Pavement (매크로 섬유로 보강된 콘크리트 포장의 역학적 특성)

  • Choi, Sung-Yong;Jung, Woo-Tai;Park, Jong-Sup
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.171-174
    • /
    • 2009
  • This study analyzes the change of the basic characteristics of pavement concrete according to the reinforcement of macro-fiber and the results of the study can be summarized as follows. In the case of the compressive strength of the concrete, the fiber reinforced pavement concrete shows a small decreasing level compared to the basic mixing of pavement concrete (hereafter referred as 'Plain') based on the aging of 28 days. In particular, the polypropylene fiber made in Korea represents a decrease in the strength about 12% compared with that of the Plain. In the case of the tensile strength, it shows certain improvements in the tensile performance compared with that of the Plain. In particular, in the case of the polyvinyl alcohol fiber that shows the largest improvement in tensile performance, it shows an increase in its strength about 21%. In the case of the bending strength, there are no improvements in its strength in the fiber reinforced concrete compared to that of the Plain.

  • PDF

Tension Stiffening of High Performance Fiber-Reinforced Cementitious Composites (고인성 섬유보강 시멘트 복합체의 인장강성)

  • Yun Hyun-Do;Yang Il-Seung;Han Byung-Chan;Hiroshi Fukuyama;Cheon Esther;Kim Sun-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.441-444
    • /
    • 2004
  • This paper presnets the tensile behavior of 8 high performance fiber-reinforced cementitious composites (HPFRCCs) members, each reinforced with one deformed bar 16mm in diameter. The variables included HPFRCC(Ductal, steel cord and polyethylene hybrid fiber, PE fiber) versus normal concrete. Fibers used in HPFRCC significantly increased tensile strength, ductility, and tension stiffening of cementitious materials. For HPFRCC, after first cracking, tensile load continue to rise without fracture localization. Sequentially developed parallel cracks contributed to the inelastic strain at increasing stress level. After yielding of the reinforcing bars, HPFRCC showed increases in loads with increasing strains.

  • PDF