• Title/Summary/Keyword: Tensile Characteristics

Search Result 2,106, Processing Time 0.028 seconds

Compression and Tensile Characteristics of Lightweight Air-Trapped Soil (경량기포토의 압축 및 인장 특성)

  • Lee, Young-Jun;Hwang, Woong-Ki;Yoon, Sung-Kyu;Kim, Jong-Sung;Choi, Dae-Kyung;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.631-642
    • /
    • 2010
  • This study is experimentally investigated for the characteristics of compression and tensile of lightweight air-trapped soils with uniform quality. Previously, EPS blocks are often used as lightweight embankment, but many problems such as the level difference and cracks caused by plastic(creep) deformation occurred in the EPS blocks. So, a new material development is urgent. By means of alternatives, lightweight air-mixed soil using in-situ soils has been developed and applied to fields. In comparison with EPS block, lightweight air-mixed soil have less creep deformation in long-time, but the strength characteristics of them are different depending on soils where they are obtained. Therefore, the quality management of them is very difficult. In this study, therefore, characteristics of lightweight air-trapped soil samples are investigated. To do this, the lightweight air-trapped soils are prepared using a manufactured sand with uniform quality. To found out the compression and tensile characteristics of lightweight air-tapped soils, unconfined compression test and splitting tensile test are conducted on the specimens prepared with different unit weight, cement-sand ratio and air-pore.

  • PDF

Tensile strain-hardening behaviors and crack patterns of slag-based fiber-reinforced composites

  • Kwon, Seung-Jun;Choi, Jeong-Il;Nguyen, Huy Hoang;Lee, Bang Yeon
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2018
  • A strain-hardening highly ductile composite based on an alkali-activated slag binder and synthetic fibers is a promising construction material due to its excellent tensile behavior and owing to the ecofriendly characteristics of its binder. This study investigated the effect of different types of synthetic fibers and water-to-binder ratios on the compressive strength and tensile behavior of slag-based cementless composites. Alkali-activated slag was used as a binder and water-to-binder ratios of 0.35, 0.45, and 0.55 were considered. Three types of fibers, polypropylene fiber, polyethylene (PE) fiber, and polyparaphenylene-benzobisethiazole (PBO) fiber, were used as reinforcing fibers, and compression and uniaxial tension tests were performed. The test results showed that the PE fiber series composites exhibited superior tensile behavior in terms of the tensile strain capacity and crack patterns while PBO fiber series composites had high tensile strength levels and tight crack widths and spacing distances.

Time-Dependent Analysis of Reinforced and Prestressed Concrete Structures Considering Tensile Creep of Concrete (인장크리프모델을 고려한 철근 및 프리스트레스트 콘크리트 구조의 시간의존적 해석)

  • 오병환;이형준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.473-479
    • /
    • 1996
  • Until now, we assumed in the time-dependent analysis of concrete structure that tensile creep has same characteristics as compressive creep has. But, in according to results of researches, it appears that tensile creep is different from compressive creep in quantity and in mechanics because tensile creep is affected significantly by micro cracking. The test results indicate that the creep behavior of concrete in compression and tension is rather different. The test data shows that the amount of creep under tensile loading is larger than that under compressive loading. In this paper, a realistic tensile creep model is suggested and incorporated in the formulation. In order to get more accurate results of time-dependent analysis. The present study indicates that the long-term deflection of concrete structures under realistic tensile creep model is somewhat larger than that under ordinary compressive creep model.

  • PDF

The Characteristics of Electrical Breakdown and Tensile Stress of Dielectric Paper for Insulation of HTS Cable (고온 초전도 케이블 절연을 위한 절연지의 인장응력 및 절연파괴 특성)

  • Kim, Young-Seok;Kwak, Dong-Soon;Kim, Hae-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.61-64
    • /
    • 2003
  • The degradation of the dielectric properties of insulating papers that were used under loaded conditions at cryogenic temperature was paid attention. Electrical and tensile stress properties of dielectric paper at cryogenic temperature have been investigated to optimum insulating design of high-Tc superconducting(HTS) cable. Tensile strength of PPLP in liquid nitrogen was high more than that of air, but tensile strain could know that decrease sharply. According as tensile strength increases, the breakdown stress of PPLP in liquid nitrogen was decreased.

  • PDF

Deterioration of tensile behavior of concrete exposed to artificial acid rain environment

  • Fan, Y.F.;Hu, Z.Q.;Luan, H.Y.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.41-56
    • /
    • 2012
  • This study is focused on evaluation of the tensile properties of concrete exposed to acid rain environment. Acid rain environment was simulated by the mixture of sulfate and nitric acid in the laboratory. The dumbell-shaped concrete specimens were submerged in pure water and acid solution for accelerated conditioning. Weighing, tensile test, CT, SEM/EDS test and microanalysis were performed on the specimens. Tensile characteristics of the damaged concrete are obtained quantitatively. Evolution characteristics of the voids, micro cracks, chemical compounds, elemental distribution and contents in the concrete are examined. The deterioration mechanisms of concrete exposed to acid rain are well elucidated.

Static and Dynamic Characteristics of AC4C Aluminum Alloy (AC4C 알루미늄 합금의 정적 및 동적 특성)

  • Kwon, Y.G.;Ju, W.K.;Song, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.220-225
    • /
    • 2007
  • The mechanical characteristics of AC4C Aluminum Casting Alloy were investigated by tensile test and impact test. Based on the tensile test' s result, we found that the yield strength of a high speed was about 10% higher than that of a low speed test and the maximum rupture strain mostly occurred in low speed tensile test. The impact energy of curved surface specimen was higher than that of plane surface specimen that can be measured in impact test.

  • PDF

Microstructural Analysis of Local Tensile Deformation Characteristics in A356 Hollow Sand Cast Chassis Part (A356 중공 주조 샤시 부품에서의 국부적인 인장 변형 특성에 미치는 미세 조직 분석)

  • Kim, Jae-Joong;Ko, Young-Jin;Lim, Jong-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • Aluminum rear lower arm is designed for luxury sedan and manufactured by hollow sand casting in the present study. Here we present the relationship between local microstructure and coupon tensile test in the rear lower arm. The characteristics of the local tensile deformation are supposed to be dependent upon Si distribution and DAS (dendrite arm spacing). Si distribution affects the yield strength and DAS affects the elongation of local area in the part, respectively.

A Study on the Development of Grip Adapters for Developing Design Tensile Strength of Glass Fiber Reinforced Polymer Rebar (GFRP Rebar의 적정 인장강도 발현을 위한 정착구 개발에 관한 연구)

  • Park Ji-Sun;You Young-Chan;Park Young-Hwan;Kim Hyeong-Yeol;You Young-Jun;Kim Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.797-800
    • /
    • 2004
  • Some test results indicated that the current ASTM grip adapter of GFRP rebar was not successful in developing the design tensile strength of GFRP rebar with reasonable accuracy. It is because the current ASTM grip adapter of GFRP rebar does not take into account the various geometric characteristics of GFRP rebar such as surface treatment, shape of bar cross section, bar deformation as well as physical characteristics such as poisson effect, elastic modulus in the transverse direction and so on. The research reported in this paper is to provide how to proportion an adequate grip adapter to develop design tensile properties of GFRP rebar. The proposed grip adapter is derived from the equilibrium or compatibility equations. From the preliminary test results for rounded GFRP rebar, it was found that the grip adapter with specific size proportioned by proposed method shows the highest tensile strength among them.

  • PDF

Effect of Hydrogen Charging Time and Tensile Loading Speed on Tensile Properties of 304L Stainless Steels

  • Hwang, SeungKuk;Lee, Sangpill;Lee, Jinkyung;Bae, Dongsu;Lee, Moonhee;Nam, Seunghoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • This study dealt with the tensile strength characteristics of stainless steel 304L steel by hydrogen charging. Especially, the effect of hydrogen charging time on the tensile strength and ductility of 304L stainless steels was evaluated, in conjunction with the observation of their fracture surfaces. The tensile properties of hydrogen-charged 304L stainless steels were also investigated with the variation of tensile loading speeds. The hydrogen amount of 304L stainless steels obviously increased with the increase of hydrogen charging time. The tensile properties of 304L stainless steels were clearly affected by the short term charging of hydrogen. In particular, the elongation of 304L stainless steels decreased with increasing hydrogen charging time, due to the hydrogen embrittlement. It was also found that the tensile properties of hydrogen-charged 304L stainless steels were very sensitive to the crosshead speed for tensile loading.

Tensile Strength Characteristics of Cement Paste Mixed with Fibers (섬유가 혼합된 시멘트 페이스트의 인장강도 특성에 관한 연구)

  • Park, Sung-Sik;Hou, Yaolong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.5-16
    • /
    • 2015
  • The characteristics of tensile strength of fiber-reinforced grouting (cement paste) injected into rocks or soils were studied. A tensile strength of such materials utilized in civil engineering has been commonly tested by an indirect splitting tensile test (Brazilian test). In this study, a direct tensile testing method was developed with built-in cylinder inside a cylindrical specimen with 15 cm in diameter and 30 cm in height. The testing specimen was prepared with 0%, 0.5%, or 1% (by weight) of a PVA or steel fiber reinforced mortar. A specimen with 5 cm in diameter and 10 cm in height was also prepared and tested for the splitting tensile test. Each specimen was air cured for 7 days or 28 days before testing. The tensile strength of built-in cylinder test showed 96%-290% higher than that of splitting tensile test. The 3D finite element analyses on these tensile tests showed that the tensile strength from built-in cylinder test had was 3 times higher than that of splitting tensile test. It is similar to experimental result. As an amount of fiber increased from 0% to 1%, its tensile strength increased by 119%-190% or 23%-131% for 7 days or 28 days-cured specimens, respectively. As a curing period increased from 7 days to 28 days, its strength decreased. Most specimens reinforced with PVA fiber showed tensile strength 14%-38% higher than that of steel fiber reinforced specimens.