• 제목/요약/키워드: Tennessee Eastman Process

검색결과 10건 처리시간 0.022초

A Hybrid Fault Diagnosis Method based on SDG and PLS;Tennessee Eastman Challenge Process

  • Lee, Gi-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.110-115
    • /
    • 2004
  • The hybrid fault diagnosis method based on a combination of the signed digraph (SDG) and the partial least-squares (PLS) has the advantage of improving the diagnosis resolution, accuracy and reliability, compared to those of previous qualitative methods, and of enhancing the ability to diagnose multiple fault. In this study, the method is applied for the multiple fault diagnosis of the Tennessee Eastman challenge process, which is a realistic industrial process for evaluating process contol and monitoring methods. The process is decomposed using the local qualitative relationships of each measured variable. Dynamic PLS (DPLS) model is built to estimate each measured variable, which is then compared with the estimated value in order to diagnose the fault. Through case studies of 15 single faults and 44 double faults, the proposed method demonstrated a good diagnosis capability compared with previous statistical methods.

  • PDF

주성분 분석을 이용한 효과적인 화학공정의 이상진단 모델 개발 (Principal Component Analysis Based Method for Effective Fault Diagnosis)

  • 박재연;이창준
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.73-77
    • /
    • 2014
  • In the field of fault diagnosis, the deviations from normal operating conditions are monitored to identify the type of faults and find their root causes. One of the most representative methods is the statistical approaches, due to a large amount of advantages. However, ambiguous diagnosis results can be generated according to fault magnitudes, even if the same fault occurs. To tackle this issue, this work proposes principal component analysis (PCA) based method with qualitative information. The PCA model is constructed under normal operation data and the residuals from faulty conditions are calculated. The significant changes of these residuals are recorded to make the information for identifying the types of fault. This model can be employed easily and the tasks for building are smaller than these of other common approaches. The efficacy of the proposed model is illustrated in Tennessee Eastman process.

데이터 기반 이상진단법을 위한 화학공정의 조업모드 판별 (Operation Modes Classification of Chemical Processes for History Data-Based Fault Diagnosis Methods)

  • 이창준;고재욱;이기백
    • Korean Chemical Engineering Research
    • /
    • 제46권2호
    • /
    • pp.383-388
    • /
    • 2008
  • 화학공정의 안전하고 효율적인 운전에 관심이 커지면서 공정이상의 원인을 조기에 진단하기 위한 다양한 이상진단방법이 연구되어 왔다. 최근에는 통계적 모델 등 정량적 데이터에 기반한 이상진단방법이 많이 연구되고 있으나, 특정 조업영역에서 얻어진 통계적 모델을 다른 조업영역에 적용하면 오진단이 많아지게 된다. 따라서 공정특성상 다양한 조업영역이 존재하는 화학공정에 데이터기반 방법론을 적용하기에는 어려움이 있어 화학공정의 조업영역 판별법이 요구되고 있다. 이 연구에서는 유클리드 거리(Euclidean distance), FDA(Fisher's discriminant analysis), PCA(principal component analysis)의 통계모델과 이 모델들에 공정변수의 동특성을 반영한 모델을 제안하였다. 6개의 조업모드를 가진 TE(tennessee eastman) 공정에 대한 사례연구를 통해 동특성을 반영한 PCA 모델의 성능이 가장 우수함을 확인하였다.

LOF를 이용한 ICA 기반 통계적 공정관리의 성능 개선 방법론 (The Use of Local Outlier Factor(LOF) for Improving Performance of Independent Component Analysis(ICA) based Statistical Process Control(SPC))

  • 이재신;강복영;강석호
    • 한국경영과학회지
    • /
    • 제36권1호
    • /
    • pp.39-55
    • /
    • 2011
  • Process monitoring has been emphasized for the monitoring of complex system such as chemical processing industries to achieve the efficiency enhancement, quality management, safety improvement. Recently, ICA (Independent Component Analysis) based MSPC (Multivariate Statistical Process Control) was widely used in process monitoring approaches. Moreover, DICA (Dynamic ICA) has been introduced to consider the system dynamics. However, the existing approaches show the limitation that their performances are strongly dependent on the statistical distributions of control variables. To improve the limitation, we propose a novel approach for process monitoring by integrating DICA and LOF (Local Outlier Factor). In this paper, we aim to improve the fault detection rate with the proposed method. LOF detects local outliers by using density of surrounding space so that its performance is regardless of data distribution. Therefore, the proposed method not only can consider the system dynamics but can also assure robust performance regardless of the statistical distributions of control variables. Comparison experiments were conducted on the widely used benchmark dataset, Tennessee Eastman process (TE process), and showed the improved performance than existing approaches.

부분최소제곱법 모델의 파라미터 추정을 이용한 화학공정의 이상진단 모델 개발 (The Development of a Fault Diagnosis Model based on the Parameter Estimations of Partial Least Square Models)

  • 이광오;이창준
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.59-67
    • /
    • 2019
  • Since it is really hard to construct process models based on prior process knowledges, various statistical approaches have been employed to build fault diagnosis models. However, the crucial drawback of these approaches is that the solutions may vary according to the fault magnitude, even if the same fault occurs. In this study, the parameter monitoring approach is suggested. When a fault occurs in a chemical process, this leads to trigger the change of a process model and the monitoring parameters of process models is able to provide the efficient fault diagnosis model. A few important variables are selected and their predictive models are constructed by partial least square (PLS) method. The Euclidean norms of parameters of PLS models are estimated and a fault diagnosis can be performed as comparing with parameters of PLS models based on normal operational conditions. To improve the monitoring performance, cumulative summation (CUSUM) control chart is employed and the changes of model parameters are recorded to identify the type of an unknown fault. To verify the efficacy of the proposed model, Tennessee Eastman (TE) process is tested and this model can be easily applied to other complex processes.

화학공정 감시를 위한 함수연결연상 신경망 시스템 구현 (The Analysis of a Process Monitoring system based on Functional Link Associative Network)

  • 윤인섭;조재규;이동언;김용하;안성준
    • 한국가스학회지
    • /
    • 제7권3호
    • /
    • pp.24-31
    • /
    • 2003
  • 화학공장은 수많은 장치들로 구성되어 있고 매우 복잡한 구조를 가지고 있다. 특히 분산 제어 시스템(Distributed Control System, DCS)이나 공정 정보 시스템(Process Information System, PIS) 등을 설치하여 매분 또는 매초 단위로 공정 데이터를 얻고 있다. 화학공장의 경우, 데이터들의 방대한 양 뿐 만 아니라 데이터들간의 상호 연관성이 크고 재순환이나 화학 반응 등으로 인하여 막대한 계산량 및 비선형성을 지니기 때문에 효과적 분석에 곤란한 점이 있다. 따라서 본 연구에서는 함수연결연상 신경망을 이용하여 입력변수들을 확장함으로써 신경망의 비선형성 표현능력과 학습능력이 뛰어난 프로그램의 개발에 주안점을 두고 있다. REFA (Real Time Fault Analyzer)는 실시간으로 공정정보를 입력받은 후 입력값을 PC로 매핑하고, 이를 다시 역으로 매핑하여 입력값을 예측하여 공정을 감시하는 시스템으로 개발되었으며, Tennessee Eastman 공정에 적용해 우수성을 입증하였다.

  • PDF

Industrial Process Monitoring and Fault Diagnosis Based on Temporal Attention Augmented Deep Network

  • Mu, Ke;Luo, Lin;Wang, Qiao;Mao, Fushun
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.242-252
    • /
    • 2021
  • Following the intuition that the local information in time instances is hardly incorporated into the posterior sequence in long short-term memory (LSTM), this paper proposes an attention augmented mechanism for fault diagnosis of the complex chemical process data. Unlike conventional fault diagnosis and classification methods, an attention mechanism layer architecture is introduced to detect and focus on local temporal information. The augmented deep network results preserve each local instance's importance and contribution and allow the interpretable feature representation and classification simultaneously. The comprehensive comparative analyses demonstrate that the developed model has a high-quality fault classification rate of 95.49%, on average. The results are comparable to those obtained using various other techniques for the Tennessee Eastman benchmark process.

계층적 분해 방법과 PCA를 이용한 공장규모 실시간 감시 및 진단 (Plant-wide On-line Monitoring and Diagnosis Based on Hierarchical Decomposition and Principal Component Analysis)

  • 조현우;한종훈
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 1997
  • 화학 공정을 계속적으로 감시함으로써 공정의 이상이 장치의 고장 또는 폭발에 이르지 않도록 조기에 이상을 감시하는 기술은 공장 조업의 안정성과 생산성의 측면에서 볼 때 매우 중요하다 최근, DCS와 같은 공정 정보 시스템이 널리 보급됨에 따라서 방대한 양의 데이터들을 해석해서 실시간으로 공정을 감시하고 진단할 수 있는 기반이 마련되었다. 본 연구에서는 계층적 분해 기법과 PCA에 기반을 둔 공장 규모의 실시간 감시 기법을 제안한다. 대형 공정을 효율적으로 모니터링 하기 위하여 전체 공정은 몇 개의 군으로 나뉘며 또한 이 군은 다시 몇 개의 하위 군으로 세분하게 된다. 이렇게 전체 공정을 분해하여 계층적인 공정 모델을 구성함으로써, 전체 공정의 조업 상황을 감시할 수 있을 뿐만 아니라 이상이 발생했을 시에는 하위 계층의 조업 상황을 고려하여 보다 자세한 이상 원인을 진단할 수 있다. 또한 각 세부 단위 공정들에 대한 조업 정보를 포함하고 있는 하위 모델들과 전체 조업 전반에 관한 정보를 지닌 전체 모델을 통하여 공정 이상을 조기에 감시함으로써 이상이 전파를 방지할 수 있다. 이러한 실시간 감시 및 진단 기법을 구현학 Idnl하여 기존의 SPC와 다변량 통계 기법의 하나인 PCA를 적용하였으며, 제안한 방법의 감시 및 진단 성능을 평가하기 위하여 41개의 측정 변수를 가진 Tennessee Eastman 공정에 대하여 전산 모사를 수행하였다. 세 가지 경우에 대하여 적용한 결과들은 이상의 신속한 감지와 믿을만한 원인 진단 능력을 보여 주었다.

  • PDF

공정 이상원인의 비선형 통계적 방법을 통한 진단 (Identifying Causes of Industrial Process Faults Using Nonlinear Statistical Approach)

  • 조현우
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3779-3784
    • /
    • 2012
  • 산업체 공정의 실시간 공정 모니터링과 진단은 생산 제품의 품질과 안전을 보장하는데 반드시 필요한 활동들의 하나이다. 그중에서 공정 진단은 공정에 발생된 특정 이상상황의 원인을 밝혀내는 것으로서 조업자들이 이상상황의 근본원인을 보다 효과적으로 도출하는데 도움을 줄 수 있다. 본 논문에서는 비선형 KFDA 기법과 데이터 전처리기법을 이용한 이상원인 진단방법을 적용하고 이의 진단 성능을 기존 선형 기법에 기반한 PCA 진단방법과 비교한다. 실제 공정을 모사한 Tennessee Eastman 공정 시뮬레이터의 공정 데이터를 통한 사례연구를 수행한 결과 기존 선형 진단 방법론 대비 신뢰할 수 있는 진단 결과를 얻을 수 있었다.

가중증상모델과 패턴매칭을 이용한 화학공정의 이상진단 (Fault diagnosis for chemical processes using weighted symptom model and pattern matching)

  • 오영석;모경주;윤종한;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제3권5호
    • /
    • pp.520-525
    • /
    • 1997
  • This paper presents a fault detection and diagnosis methodology based on weighted symptom model and pattern matching between the coming fault propagation trend and the simulated one. In the first step, backward chaining is used to find the possible cause candidates for the faults. The weighted symptom model is used to generate those candidates. The weight is determined from dynamic simulation. Using WSM, the methodology can generate the cause candidates and rank them according to the probability. Second, the fault propagation trends identified from the partial or complete sequence of measurements are compared with the standard fault propagation trends stored a priori. A pattern matching algorithm based on a number of triangular episodes is used to effectively match those trends. The standard trends have been generated using dynamic simulation and stored a priori. The proposed methodology has been illustrated using two case studies, and the results showed satisfactory diagnostic resolution.

  • PDF