The hybrid fault diagnosis method based on a combination of the signed digraph (SDG) and the partial least-squares (PLS) has the advantage of improving the diagnosis resolution, accuracy and reliability, compared to those of previous qualitative methods, and of enhancing the ability to diagnose multiple fault. In this study, the method is applied for the multiple fault diagnosis of the Tennessee Eastman challenge process, which is a realistic industrial process for evaluating process contol and monitoring methods. The process is decomposed using the local qualitative relationships of each measured variable. Dynamic PLS (DPLS) model is built to estimate each measured variable, which is then compared with the estimated value in order to diagnose the fault. Through case studies of 15 single faults and 44 double faults, the proposed method demonstrated a good diagnosis capability compared with previous statistical methods.
In the field of fault diagnosis, the deviations from normal operating conditions are monitored to identify the type of faults and find their root causes. One of the most representative methods is the statistical approaches, due to a large amount of advantages. However, ambiguous diagnosis results can be generated according to fault magnitudes, even if the same fault occurs. To tackle this issue, this work proposes principal component analysis (PCA) based method with qualitative information. The PCA model is constructed under normal operation data and the residuals from faulty conditions are calculated. The significant changes of these residuals are recorded to make the information for identifying the types of fault. This model can be employed easily and the tasks for building are smaller than these of other common approaches. The efficacy of the proposed model is illustrated in Tennessee Eastman process.
화학공정의 안전하고 효율적인 운전에 관심이 커지면서 공정이상의 원인을 조기에 진단하기 위한 다양한 이상진단방법이 연구되어 왔다. 최근에는 통계적 모델 등 정량적 데이터에 기반한 이상진단방법이 많이 연구되고 있으나, 특정 조업영역에서 얻어진 통계적 모델을 다른 조업영역에 적용하면 오진단이 많아지게 된다. 따라서 공정특성상 다양한 조업영역이 존재하는 화학공정에 데이터기반 방법론을 적용하기에는 어려움이 있어 화학공정의 조업영역 판별법이 요구되고 있다. 이 연구에서는 유클리드 거리(Euclidean distance), FDA(Fisher's discriminant analysis), PCA(principal component analysis)의 통계모델과 이 모델들에 공정변수의 동특성을 반영한 모델을 제안하였다. 6개의 조업모드를 가진 TE(tennessee eastman) 공정에 대한 사례연구를 통해 동특성을 반영한 PCA 모델의 성능이 가장 우수함을 확인하였다.
Process monitoring has been emphasized for the monitoring of complex system such as chemical processing industries to achieve the efficiency enhancement, quality management, safety improvement. Recently, ICA (Independent Component Analysis) based MSPC (Multivariate Statistical Process Control) was widely used in process monitoring approaches. Moreover, DICA (Dynamic ICA) has been introduced to consider the system dynamics. However, the existing approaches show the limitation that their performances are strongly dependent on the statistical distributions of control variables. To improve the limitation, we propose a novel approach for process monitoring by integrating DICA and LOF (Local Outlier Factor). In this paper, we aim to improve the fault detection rate with the proposed method. LOF detects local outliers by using density of surrounding space so that its performance is regardless of data distribution. Therefore, the proposed method not only can consider the system dynamics but can also assure robust performance regardless of the statistical distributions of control variables. Comparison experiments were conducted on the widely used benchmark dataset, Tennessee Eastman process (TE process), and showed the improved performance than existing approaches.
Since it is really hard to construct process models based on prior process knowledges, various statistical approaches have been employed to build fault diagnosis models. However, the crucial drawback of these approaches is that the solutions may vary according to the fault magnitude, even if the same fault occurs. In this study, the parameter monitoring approach is suggested. When a fault occurs in a chemical process, this leads to trigger the change of a process model and the monitoring parameters of process models is able to provide the efficient fault diagnosis model. A few important variables are selected and their predictive models are constructed by partial least square (PLS) method. The Euclidean norms of parameters of PLS models are estimated and a fault diagnosis can be performed as comparing with parameters of PLS models based on normal operational conditions. To improve the monitoring performance, cumulative summation (CUSUM) control chart is employed and the changes of model parameters are recorded to identify the type of an unknown fault. To verify the efficacy of the proposed model, Tennessee Eastman (TE) process is tested and this model can be easily applied to other complex processes.
화학공장은 수많은 장치들로 구성되어 있고 매우 복잡한 구조를 가지고 있다. 특히 분산 제어 시스템(Distributed Control System, DCS)이나 공정 정보 시스템(Process Information System, PIS) 등을 설치하여 매분 또는 매초 단위로 공정 데이터를 얻고 있다. 화학공장의 경우, 데이터들의 방대한 양 뿐 만 아니라 데이터들간의 상호 연관성이 크고 재순환이나 화학 반응 등으로 인하여 막대한 계산량 및 비선형성을 지니기 때문에 효과적 분석에 곤란한 점이 있다. 따라서 본 연구에서는 함수연결연상 신경망을 이용하여 입력변수들을 확장함으로써 신경망의 비선형성 표현능력과 학습능력이 뛰어난 프로그램의 개발에 주안점을 두고 있다. REFA (Real Time Fault Analyzer)는 실시간으로 공정정보를 입력받은 후 입력값을 PC로 매핑하고, 이를 다시 역으로 매핑하여 입력값을 예측하여 공정을 감시하는 시스템으로 개발되었으며, Tennessee Eastman 공정에 적용해 우수성을 입증하였다.
Following the intuition that the local information in time instances is hardly incorporated into the posterior sequence in long short-term memory (LSTM), this paper proposes an attention augmented mechanism for fault diagnosis of the complex chemical process data. Unlike conventional fault diagnosis and classification methods, an attention mechanism layer architecture is introduced to detect and focus on local temporal information. The augmented deep network results preserve each local instance's importance and contribution and allow the interpretable feature representation and classification simultaneously. The comprehensive comparative analyses demonstrate that the developed model has a high-quality fault classification rate of 95.49%, on average. The results are comparable to those obtained using various other techniques for the Tennessee Eastman benchmark process.
화학 공정을 계속적으로 감시함으로써 공정의 이상이 장치의 고장 또는 폭발에 이르지 않도록 조기에 이상을 감시하는 기술은 공장 조업의 안정성과 생산성의 측면에서 볼 때 매우 중요하다 최근, DCS와 같은 공정 정보 시스템이 널리 보급됨에 따라서 방대한 양의 데이터들을 해석해서 실시간으로 공정을 감시하고 진단할 수 있는 기반이 마련되었다. 본 연구에서는 계층적 분해 기법과 PCA에 기반을 둔 공장 규모의 실시간 감시 기법을 제안한다. 대형 공정을 효율적으로 모니터링 하기 위하여 전체 공정은 몇 개의 군으로 나뉘며 또한 이 군은 다시 몇 개의 하위 군으로 세분하게 된다. 이렇게 전체 공정을 분해하여 계층적인 공정 모델을 구성함으로써, 전체 공정의 조업 상황을 감시할 수 있을 뿐만 아니라 이상이 발생했을 시에는 하위 계층의 조업 상황을 고려하여 보다 자세한 이상 원인을 진단할 수 있다. 또한 각 세부 단위 공정들에 대한 조업 정보를 포함하고 있는 하위 모델들과 전체 조업 전반에 관한 정보를 지닌 전체 모델을 통하여 공정 이상을 조기에 감시함으로써 이상이 전파를 방지할 수 있다. 이러한 실시간 감시 및 진단 기법을 구현학 Idnl하여 기존의 SPC와 다변량 통계 기법의 하나인 PCA를 적용하였으며, 제안한 방법의 감시 및 진단 성능을 평가하기 위하여 41개의 측정 변수를 가진 Tennessee Eastman 공정에 대하여 전산 모사를 수행하였다. 세 가지 경우에 대하여 적용한 결과들은 이상의 신속한 감지와 믿을만한 원인 진단 능력을 보여 주었다.
산업체 공정의 실시간 공정 모니터링과 진단은 생산 제품의 품질과 안전을 보장하는데 반드시 필요한 활동들의 하나이다. 그중에서 공정 진단은 공정에 발생된 특정 이상상황의 원인을 밝혀내는 것으로서 조업자들이 이상상황의 근본원인을 보다 효과적으로 도출하는데 도움을 줄 수 있다. 본 논문에서는 비선형 KFDA 기법과 데이터 전처리기법을 이용한 이상원인 진단방법을 적용하고 이의 진단 성능을 기존 선형 기법에 기반한 PCA 진단방법과 비교한다. 실제 공정을 모사한 Tennessee Eastman 공정 시뮬레이터의 공정 데이터를 통한 사례연구를 수행한 결과 기존 선형 진단 방법론 대비 신뢰할 수 있는 진단 결과를 얻을 수 있었다.
This paper presents a fault detection and diagnosis methodology based on weighted symptom model and pattern matching between the coming fault propagation trend and the simulated one. In the first step, backward chaining is used to find the possible cause candidates for the faults. The weighted symptom model is used to generate those candidates. The weight is determined from dynamic simulation. Using WSM, the methodology can generate the cause candidates and rank them according to the probability. Second, the fault propagation trends identified from the partial or complete sequence of measurements are compared with the standard fault propagation trends stored a priori. A pattern matching algorithm based on a number of triangular episodes is used to effectively match those trends. The standard trends have been generated using dynamic simulation and stored a priori. The proposed methodology has been illustrated using two case studies, and the results showed satisfactory diagnostic resolution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.