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1. INTRODUCTION 
Because of the many serious accidents which have been 

occurred in the history of the chemical process industry, safety 
has become a top priority for those companies concerned. 
Such accidents result in an economic loss of over $16 
billion/year for the petrochemical industry in the U.S. [6]. The 
impact of such accidents on the economy includes costs of 
several billion dollars due to personal injuries, loss of 
production, and reduction in market share for the companies 
involved. Therefore, the safe and reliable operation of their 
chemical processes has become one of the primary concerns of 
chemical companies attempting to survive in the highly 
competitive international market.  

For the above reasons, automatic fault diagnosis systems 
are very much in demand, to help operators with decision- 
making and to keep these operations running continuously, 
whilst being both efficient and safe. Such systems are used to 
analyze process data on-line, monitor process trends, and 
diagnose faults when an abnormal situation arises. Among a 
variety of fault diagnosis approaches for chemical processes, 
rule-based expert system, state estimation such as observer 
and Kalman filter, SDG, qualitative simulation, statistical 
method, and neural network have been developed [1]. These 
methods are broadly classified as those that use a process 
model, and those that rely on process history data. They can be 
further subclassified as qualitative or quantitative. Our 
previous study suggested the hybrid method combining SDG 
and the partial least squares (or projection to latent structures, 
PLS) [5]. The target system is decomposed based on the local 
causal relationships of each measured variable in the SDG 
classified as the qualitative model-based methods. For each 
decomposed subprocess, local fault diagnosis is performed 
using the PLS classified as a quantitative history data-based 
method. The method has the advantages of improving the 
diagnosis resolution and accuracy compared to previous 
qualitative methods. Moreover, it enhances the reliability of 
the diagnosis for all predictable faults, including multiple fault. 
Although it is based on statistical process data, it allows the 
diagnosis model to be built based on easily obtainable data 
sets, and does not require faulty case data sets.

The Tennessee Eastman (TE) process created by the 
Eastman Chemical Company has been widely used as a 
benchmark process for evaluating process diagnosis methods 
(Fig. 1) [3]. Chiang et al. reviewed the fault detection and 
diagnosis method of the multivariate statistics such as PCA, 

FDA, PLS, and CVA (canonical variate analysis), and 
compared them using the case studies of the TE processes [2]. 
This study considers the multiple fault diagnosis of the TE 
process using the hybrid fault diagnosis method of system 
decomposition and DPLS proposed in our previous study. 
Through the diagnosis result of 15 single faults defined in the 
TE process, the diagnostic performance is compared with the 
results of Chiang et al.  

2. TENNESSEE EASTMAN PROCESS

2.1 Process Description 

Downs and Vogel proposed the TE process and described it 
in detail [3]. It provides a realistic industrial process for 
evaluating process control and monitoring methods (Fig. 1). 
The process is based on a simulation of an actual industrial 
process where the components, kinetics, and operating 
conditions have been modified for proprietary reasons. The 
process has five major units, a reactor, condenser, recycle 
compressor, vapor/liquid separator, and product stripper, and 
eight components, A, B, C, D, E, F, G, and H. The gaseous 
reactants A, C, D, and E, and the inert B, are fed to the reactor 
where the liquid products G and H are formed. The reactions 
in the reactor are: 

A(g) + C(g) + D(g)  G(liq), product 1,  
A(g)+C(g)+E(g) H(liq), product 2,  
A(g)+E(g) F(liq), byproduct, 
3D(g) 2F(liq), byproduct. 
The reactions are irreversible, exothermic, and 

approximately first-order with respect to the reactant 
concentrations. The reaction rates are Arrhenius functions of 
temperature where the reaction for G has a higher activation 
energy than the reaction for H, resulting in a higher sensitivity 
to temperature. The reactor product stream is cooled through a 
partial condenser and then fed to a vapor-liquid separator. The 
vapor exiting the separator is recycled to the reactor feed 
through a compressor. A portion of the recycle stream is 
purged to keep the inert and byproduct from accumulating in 
the process. The condensed components from the separator 
(stream 10) are pumped to a stripper. Stream 4 is used to strip 
the remaining reactants from stream 10, which are combined 
with the recycle stream via Stream 5. The products G and H 
exiting the base of the stripper are sent to a downstream 
process.  

The process contains 41 measured and 12 manipulated 
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variables. Twenty-two measured variables, F1 through T22, 
are sampled every minute. Nineteen composition 
measurements of XA through ZH are taken from streams 6, 9, 
and 11. The sampling interval and time delay for streams 6 
and 9 are both 6 minutes, and for stream 11 are 15 minutes. 
All the process measurements include Gaussian noise. The TE 
process simulation contains 21 preprogrammed faults, 16 of 
which are known, and 5 are unknown. IDV1 through IDV7 are 
associated with a step change in a process variable. IDV8 
through IDV12 are associated with an increase in the 
variability of some process variables. IDV13 is a slow drift in 
the reaction kinetics, and IDV14, IDV15, and IDV21 are 
associated with sticking valves. 

The TE simulation Fortran code used in this study can be 
downloaded from http://brahms.scs.uiuc.edu. A 1-second 

integration interval is used here. Chiang et al. use a sampling 
interval of 3 minutes, but this study uses a sampling interval of 
1 minute to obtain faster diagnosis results. 

2.2 Diagnosis model description 

The system is decomposed from the SDG of the TE process. 
However, it is a very difficult task to build an accurate SDG, 
because the process contains 4 reactions and 8 components. 
Especially, the vapor/liquid equilibrium in the reactor, 
vapor/liquid separator, and stripper becomes a great obstacle 
in determining the signs of the causal relationships between 
process variables. However, our method does not need the 
SDG of the whole process, and uses only the locally reduced 
SDG of the measured variables, which are directly affected by 
the faults defined in the process. For these reasons, the efforts 
to build SDG are greatly reduced. The proposed method can 
diagnose only the pre-defined faults. Fifteen faults of IDV1 
through IDV15 among the 20 faults defined in the simulation 
program are known. Our study aimed to diagnose these 15 
faults (Table 1), and found 26 measured variables directly 
affected by them. ZD through ZH among the 26 variables are 
removed, because their sample intervals of 15 minutes are too 
wide to be helpful in diagnosis speed. This study found that 
P16 in the simulation program does not mean the stripper 
pressure, but the pressure of the feed mixing zone. As P16 
does not have an accurate value, it is eliminated from the 
diagnosis. As a result, the process is decomposed centering on 
20 measured variables and the reduced digraph for the 
decomposed subprocess is obtained. The measured variables 
connected to each measured variable are shown in Table 2, 
and the faults added to each measured node are shown in 
Table 3. 

 In Table 2, the measured variables affecting P7 are 
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Fig. 1. Process flow diagram of the TE process. 

Table 1 Faults defined in the TE process. 

fault ID description type 

IDV1 A/C Feed Ratio Step 

IDV2 B Composition Step 

IDV3 D Feed Temp. Step 

IDV4 Reactor CW Inlet Temp. Step 

IDV5 Condenser CW Inlet Temp. Step 

IDV6 A Feed Loss Step 

IDV7 C Header Pressure Loss Step 

IDV8 A, B, C Feed Composition Random Variation

IDV9 D Feed Temperature Random Variation

IDV10 C Feed Temperature Random Variation

IDV11 Reactor CW Inlet Tem. Random Variation

IDV12 Condenser CW Inlet Temp. Random Variation

IDV13 Reaction Kinetics Slow Drift 

IDV14 Reactor CW Valve Sticking 

IDV15 Condenser CW Valve Sticking 
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originally 13: F5, F6, L8, T9, P13, XA, XB, XC, XD, XE, XF, 
YG, and YH. However, because the sample interval of XA 
through XF is as wide as 6 minutes, it is doubtful whether they 
can represent timely the effect from F1, F2, F3, and F4. 
Therefore, the reduced digraphs of XA through XF are built, 
and XA through XF are replaced with F1, F2, F3, F4, F5, F14, 
F17, and YA through YF. Due to this replacement, IDV1, 
IDV2, and IDV3 become the faults added to P7. F6 is 
removed from the estimation model because it can be 
represented by F1, F2, F3, F4, F14, and F17. For the same 
reasons, the reduced digraphs of L8, T9, T11, and P13 are 
changed as shown in Table 2.  

The learning data to build the DPLS model for the 
decomposed subprocess can be obtained in the presence of 
set-point change or external disturbances. However, the data 
set in the presence of external disturbance cannot be used 
because the changes of the operation conditions such as the 
feed composition and cooling water temperature are not 
available in the simulation program. In order to get the 
learning data, the set-point is changed. The set-points of 11 
control loops in the TE process can are changed, and the 
changes are set on the basis of 10%. The set-points of 5 
loops are changed to the values lower than 10% due to the 
controller outputs saturations when the change is 10%.

The simulation time for the training data set was 10 hours, 

and the set point was changed after 1 simulation hour from the 
run. The total number of samples generated for each run was 
11×10×60=6600. In considering the time delays, the 
composition measurement variables having the known time 
delays of 6 (or 15) minutes show the previous value of 6 (or 
15) minutes ago. Therefore, the DPLS models should be 
modified to deal with this dead time. For instance, XA and YA 
have the known time delay of 6 minutes. If the current and one 
previous values are used as input data of the DPLS model, the 
input X for the estimation of XA(t) is F1(t-6), F2(t-6), F3(t-6), 
F4(t-6), F17(t-6), YA(t), XA(t-6), F1(t-6), F2(t-6), F3(t-6), 
F4(t-6), F17(t-6), and YA(t-6). Also, the input X for the 
estimation of T18(t-15) is F4(t-15), T11(t-15), F14(t-15), 
L15(t-15), F17(t-15), F19(t-15), ZD(t), ZE(t), ZF(t), ZG(t), 
ZH(t), T18(t-16), F4(t-16), T11(t-16), F14(t-16), L15(t-16), 
F17(t-16), F19(t-16), ZD(t-1), ZE(t-1), ZF(t-1), ZG(t-1), and 
ZH(t-1).

The number of past values l and PCs are determined from 
the learning data. As in our previous model, this study uses the 
cross-corelation plots of the scores to determine the number of 
time lags and PCs, as suggested by Ku et al. [4]. The number 
of time lags and PCs for the TE process are shown in Table 3. 
The same data are used to determine the CUSUM parameters 
of minimal jump size and threshold size.  

Using Table 3, the fault sets for the TE process are obtained 
as shown in Table 4. If a fault occurs, the qualitative state for 
the residual may be (+) or (-). However, the sign of the arc 
from the faults to the measured variables are unknown except 
IDV6 and IDV7 among 15 faults defined in the TE process 
(Table 3). As the type of IDV8 through IDV12 are random 
variation, the signs of the symptoms can fluctuate between (+) 
and (-), which greatly decreases the diagnosis accuracy. In 
order to consider the characteristics of the faults defind in the 
TE process and make a stable diagnosis, the diagnosis strategy 
is modified for CUSUM to monitor the squared residuals as 
well as the residuals of each variable, according to the 
following equation:  

22 )ˆ( iii yyr                                  (1) 

When the symptoms of squared residuals are used, a 
particular strategy is used to increase the diagnosis speed. In 
considering the variable of which the squared residual is 
monitored, if the residual (either + or -) or the squared residual 
for the variable is detected by CUSUM, it is concluded that 

Table 2 Input variables, number of PCs, and time delays. 

 input variables for the estimation model PC l

F1 MV3 1 1

F4 MV4 1 1

P7 F1, F2, F3, F4, F5, L8, T9, P13, F17, YA, 
YB, YC, YD, YE, YF, YG, YH 

10 2

L8 F1, F2, F3, F4, F5, P7, T9, P13, F14, F17, 
YA, YC, YD, YE, YF, YG, YH 

6 1

T9 F1, F2, F3, F4, F5, P7, L8, T11, P13, F17, 
T18, YA, YB, YC, YD, YE, YF, YG, YH, 
MV10

6 2

T11 F1, F2, F3, F5, P7, L8, T9, F10, L12, P13, 
F14, F17, YA, YB, YC, YD, YE, YF, YG, YH, 
MV11 

11 2

P13 F1, F2, F3, F4, F5, P7, L8, T9, F10, T11, 
L12, F14, F17, YA, YB, YC, YD, YE, YF, 
YG, YH 

9 2

T18 F4, T11, F14, L15, F17, F19, ZD, ZE, ZF, 
ZG, ZH 

8 2

T21 L8, T9, MV10 4 2

T22 T9, MV11, P713 1 1

XA F1, F2, F3, F4, F5, F17, YA 7 2

XB F1, F2, F3, F4, F5, F17, YB 7 2

XC F1, F2, F3, F4, F5, F17, YC 5 1

YA F5, F6, P7, L8, T9, F10, T11, L12, XA, XC, 
XD, XE 

6 1

YC F5, F6, P7, L8, T9, F10, T11, L12, XA, XC, 
XD, XE 

7 2

YD F5, F6, P7, L8, T9, F10, T11, L12, F14, XA, 
XC, XD 

6 1

YE F5, F6, P7, L8, T9, F10, T11, L12, F14, XA, 
XC, XE 

6 1

YF F5, F6, P7, L8, T9, F10, T11, L12, F14, XA, 
XC, XE, XF 

7 1

YG F5, F6, P7, L8, T9, F10, T11, L12, F14, XA, 
XC, XD 

7 1

YH F5, F6, P7, L8, T9, F10, T11, L12, F14, XA, 
XC, XD 

9 1

Table 3 Fault added to the measured node. 

sign of arc measured 
variable negative (-) positive(+) or negative(-) 

F1 IDV6  

F4 IDV7  

P7  IDV13 

L8  IDV13 

T9  IDV3, IDV4, IDV9, IDV11, 
IDV13, IDV14 

T11  IDV5, IDV12, IDV13, IDV15 

P13  IDV13 

T18  IDV1, IDV2, IDV8, IDV10, 
IDV13

T21  IDV4, IDV11, IDV14 

T22  IDV5, IDV12, IDV15 

XA  IDV1, IDV2, IDV8 

XB  IDV2, IDV8 

XC  IDV1, IDV2, IDV8 

YA-YH  IDV13 
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the symptom of the squared residual is detected.          
The 8 composition measurement variables of YA through 

YH are affected only by IDV13, and are independent of other 
faults. It cannot be said that the possibility of false detection of 
one variable among the 8 variables is low. When each 
composition variable is monitored separately, false detection 
of one variable may make the diagnosis unstable. In order to 
resolve the difficulty, YA through YH are grouped into one 
variable as follows: 

H

Ai

ii YYSUMY 2)ˆ(2                            (2)            

3. EXAMPLE 

3.1 IDV1 (A/C Feed Ratio, B Composition Constant)  

When the fault occurs, a step change is induced in the A/C 
feed ratio in stream 4, which decreases the A feed in stream 6 
and a control loop reacts to increase the A feed in stream 1. 
The variations in the flowrate and compositions of stream 6 to 
the reactor causes variations in the reactor level, which affects 
the flow rate in stream 4 through a cascade control loop. Since 
the ratio of the reactants A and C changes, the variables 
associated with the reaction (level, pressure, and composition) 
changes correspondingly.  

The simulation time for the faulty data set was 48 hours to 
compare the diagnosis result with that of Chiang et al.’s study. 
The simulations started with no faults, and the faults were 
introduced to the run from 8 simulation hours. To measure the 
diagnostic performance, four parameters were used: accuracy, 
resolution, wrong detection, and detection delay [3]. The 
accuracy is 1 if the diagnosis is accurate; that is, the true fault 
is included in the final fault candidates set. Otherwise, the 
accuracy is 0. The resolution denotes the number of final fault 
candidates. Wrong detection refers to the number of falsely 
detected symptoms independent of the true solution. The 
detection delay refers to the time from fault occurrence to fault 
diagnosis, and a short detection delay indicates quick detection 
and diagnosis.  

Fig. 2 shows the residuals of the detected. The bounds of 
Fig. 2 are the minimal jump size of CUSUM (6  of the 
residual distribution). The detection sequence of symptoms are 
as follows: XA2 at 522 minutes, T92 and T9(-) at 532 minutes, 
XA(-) at 540 minutes, XC(+) from 576 to 2562 minutes 
(fluctuation), XC2 at 600 minutes, P7(+) from 616 to 940 

minutes (fluctuation), P72 from 618 to 1093 minutes, T182 at 
694 minutes, T18(+) from 699 to 1204 minutes, P13(-) at 1036 
minutes (fluctuation), and P132 at 1037 minutes.  

The symptoms having sign are XA(-), XC(+), T18(+), T9(-), 
P7(+), and P13(-). The fault candidates are IDV1, IDV2, and 
IDV8 from 522 minutes to the last diagnosis time. The 
symptom of F12 is falsely detected at 571, 572, and 1676 
minutes, and F42 at 1905 and 1906 minutes. Although the final 
fault candidates obtained for these 5 minutes of false detection 
are 6 double faults including IDV6 or IDV7, the final solution 
does include the true solution and the accuracy is 1 from the 
detection to the last diagnosis time. The fluctuation of XC(+), 
P7(+) and P13(-) between detection and missed detection does 
not have any effect on the accuracy. The accurate symptom of 
XA2 is detected at 42 minutes from the fault occurrence and 
the detection delay is 42 minutes. As the final fault candidates 
are IDV1, IDV2, and IDV8, the resolution is 3. 

The definition of IDV1 does not include the sign of the 
fault. However, we can see that the symptoms of XA(-) and 
XC(+) indicate the decrease of the A/C feed ratio in stream 4. 
Therefore, IDV1 plus A/C feed ratio(-) can be a more accurate 
solution. When IDV2 occurs, B composition change and A/C 
feed ratio is constant, indicating that the sign of the symptoms 
of XA and XC should be the same regardless of B 
composition. This is a potential diagnosis strategy to increase 
the diagnosis resolution.  

3.2 IDV11 (Reactor Cooling Water Inlet Temperature)  

IDV11 induces a fault in the reactor cooling water inlet 
temperature. The fault in this case is a random variation. The 
fault induces large oscillations in the reactor cooling water 
flow rate, which results in a fluctuation of reactor temperature.  

Fig. 3 shows the residuals and squared residuals of the 
detected variables. The bounds of Fig. 6 are the minimal jump 
size of CUSUM (6  of the residual distribution). The 
detection sequence of symptoms is T21(+) at 498 minutes 
(fluctuation), T212 at 502 minutes, T21(-) at 533 minutes 
(fluctuation), and T9(+), T9(-), and T92 during 228 minutes 
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Fig. 2. Residuals of the detected variables for IDV1. 

Table 4 Fault sets of the TE process. 

symptom fault set 

F1(-) IDV6 

F4(-) IDV7 

P72 IDV1, IDV2, IDV8, IDV13 

L82 IDV1, IDV2, IDV8, IDV13 

T92
IDV1, IDV2, IDV3, IDV4, IDV8, IDV9, IDV11, 
IDV13, IDV14 

T112 
IDV1, IDV2, IDV5, IDV8, IDV12, IDV13, 
IDV15

P132 IDV1, IDV2, IDV8, IDV13 

T182 IDV1, IDV2, IDV8, IDV10, IDV13 

T212 IDV4, IDV11, IDV14 

T222 IDV5, IDV12, IDV15 

XA2 IDV1, IDV2, IDV8 

XB2 IDV2, IDV8 

XC2 IDV1, IDV2, IDV8 

SUMY2 IDV13 
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from 660 to 2874 minutes. The detection of T9(+), T9(-), 
T21(+) and T21(-) are fluctuating between detection and 
missed detection. If the diagnosis uses only residuals, the 
stable solution cannot be obtained. However, as the squared 
residuals are used, a stable solution is obtained from the 
detection to the last diagnosis time. There is no false detection 
in this case. IDV4, IDV11, and IDV14 are obtained as the 
solution, and the resolution is 3. Also, the detection delay of 
18 minutes is better than the best result (21 minutes) of Chiang 
et al. 

4. RESULT 

4.1 Result of single fault cases 

Table 5 shows the obtained diagnosis result, and compares 
the result with that of Chiang et al. The wrong detection and 
resolution shown in this table is the average of the one 
measured every 1 minute from the initial detection time to the 
last diagnosis time. The value in brackets refers to the worst 
result obtained during all diagnostic periods. Chiang et al. 
compared various statistical methods such as PCA, DPCA, 
CVA, PLS, FDA, and DFDA. In Table 5, the left and right 

values of the slash in the result of Chiang et al. refer to the 
best and worst results of these methods, respectively. 

When Chiang et al. considered detection delays, a fault was 
indicated only when six consecutive measure values have 
exceeded the threshold, and the detection delay was recorded 
as the first time instant in which the threshold was exceeded. 
Therefore, it is expected that the actual detection delay of their 
method will be more than the detection delay shown in Table 
5. The detections of five cases (IDV4, IDV6, IDV7, IDV11, 
and IDV14) are faster than those of Chiang et al. Also, the 
other cases show similar or only slightly worse detection 
delays than their methods.  

The diagnosis for three cases (IDV3, IDV9, and IDV15) 
failed because the fault sizes of these cases were so small and 
therefore the variations of process variables were as weak as 
the steady state. Therefore, other methods used by Chiang et al. 
also encounter difficulty in making accurate diagnosis (Table 
5).

In the other 12 cases, except IDV8, the diagnostic 
accuracies are almost 1 during all diagnosis periods. In the 
diagnosis of IDV8, our method failed during 39.1% of the 
diagnosis periods, and the accuracy is 0.609. The symptoms of 
P7, T9, P13, and XA are detected, but are frequently missed 
due to the small fault size, indicating that the diagnostic 
performance of the suggested method depends on the fault size. 
However, the key symptom of IDV8, XA2, is detected during 
31 minutes from 570 minutes, and this time of 31 minutes 
should be sufficient to decide the fault occurrence. The 
parameters of the missed detection and misclassification rates 
used by Chiang et al. mean the diagnosis failure rate. 
Although the meaning is not the same, the difference in value 
of one and two parameters can be a comparable value with the 
accuracy used in this study. In most cases, the accuracy 
obtained by our study was one, which was better than the 
result obtained by Chiang et al.  

In the diagnosis of IDV6, the average wrong detection was 
over 7. This is due to the controller output saturations, such as 
MV3 (547 minutes, 100%), MV9 (764 minutes, 100%), MV10 
(1037 minutes, 100%), MV5 (1152 minutes, 100%), MV6 
(1225 minutes, 0%), and MV4 (1303 minutes, 100%), and the 
fact that the operation range guided by the fault is very 
different from that of the training data.  

4.2 Result of double fault cases 

Double faults are generated from the combinations of single 
faults. As IDV3, IDV9, and IDV15, among 15 single faults, 
have a detection problem, they are omitted in the 
combinations for double faults. IDV6 is also omitted because 
it makes a number of false detections. Fifty-five double faults 
from 11 single faults (11C2) can be made. However, the 
proposed method cannot diagnose double faults which affect 
the same measured variables. For instance, the symptoms set 
which can be generated from IDV2 or IDV8 includes all 
possible symptoms from IDV1. With the double faults of 
IDV1 and IDV2, the possible solutions are IDV1, IDV2, and 
IDV8. Therefore, 11 double faults are removed and 44 double 
faults are tested. Table 6 shows the diagnosis for double fault 
cases. 

In Table 6, the resolutions of two cases are low. The 
accuracy of the double fault of IDV2 and IDV12 is very low 
with the average value of 0.106. In this case, SUMY2 was 
wrongly detected during 2112 minutes, and XA and XB were 
detected in short periods. As IDV13 can explain one more 
symptom than IDV2, the diagnosis failed. In the case of IDV5 
and IDV10, the average accuracy is 0.073. As the symptoms 
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Fig. 3. Residuals and squared residuals of T9 and T21 for 
IDV11.

Table 5 Diagnosis results for single faults. 

detection delays 
(min)

accuracy 

Chiang et al. 
(best/worst)linear 

PLS 
Ching et 

al
linear 
PLS missed 

detection
misclassi-
fication

IDV1 42 6/21 1 0/0.01 0.01/0.88

IDV2 115 36/75 1 0.01/0.03 0.01/0.44

IDV3 - - 0 0.98/0.99 0.73/1 

IDV4 2 3/- 1 0/0.98 0.12/1 

IDV5 13 0/48 1 0/0.78 0.006/1

IDV6 1 0/33 1 0/0.01 0/0.83 

IDV7 1 0/3 1 0/0.49 0/0.98 

IDV8 90 60/69 0.61 0.02/0.49 0.00/1 

IDV9 - - 0 0.981/0.994 0.77/1 

IDV10 189 69/303 1 0.1/0.67 0.1/1 

IDV11 18 21/912 1 0.19/0.80 0.12/0.99

IDV12 68 0/66 0.99 0/0.029 0.01/0.99

IDV13 142 111/147 1 0.04/0.06 0.21/1 

IDV14 11 3/18 1 0/0.16 0.00/0.99

IDV15 - 2031/- 0 0.9/0.99 0.73/1 
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of T11 and T18 were detected to the last and T22 was not 
detected, single faults of IDV1, IDV2, IDV8, and IDV13 can 
explain two symptoms of T11 and T18 during long diagnosis 
periods.

Wrong detections are less than 1 on average. In Table 6, 
resolution is not low because a number of single faults that 
affect the same measured variables can be distinguished only 
by the fault type of step and random variation.  

5. CONCLUSION 
This study investigated the multiple fault diagnosis of the 

TE process, which is a benchmark process for evaluating 
process diagnosis methods. The hybrid diagnosis method 
combining SDG and DPLS, proposed in our previous study, 
was used. The process was decomposed centering on 20 
measured variables which are directly affected by the 15 faults 
defined in the TE process, and the reduced digraph for the 
decomposed subprocess was made. Dynamic linear PLS 
model was constructed for each decomposed subprocess, and 
fault diagnosis was performed by using the residual between 
the estimated value determined by the DPLS model and the 
measured one.  

Through the case studies of 15 single faults, the diagnosis 
performance was compared with the statistical methods 
reviewed by Chiang et al., which need faulty case data sets. 
The result confirmed that the satisfactory accuracy of the 
proposed method. Especially, the diagnosis of five cases by 
the proposed method was faster than that by other methods. 
The average wrong detection of one single fault case was over 
7, because the operation range guided by the fault was very 
different from that of the training data. For further study, the 
diagnosis strategy will have to be able to change the DPLS 
models according to the significant changes of the operation 
ranges. If sufficient data for various operation ranges are 
provided, multivariate statistics such as PCA can be helpful to 
judge the change of the operating conditions. After the 
estimation models are switched, the CUSUM parameters of 

minimal jump size and threshold size may be changed. Also, 
the change needs a strategy to smoothly alter the variables of 
the detection program. Double fault diagnosis of the TE 
process was performed. The diagnosis results were acceptably 
accurate.  
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Table 6 Diagnosis results for double faults. 

first
fault

second
fault

detection 
delay  

accuracy 
wrong
detection

resolution
first
fault

second
fault

detection 
delay  

accuracy 
wrong
detection

resolution

IDV1 IDV4 42/2 1 0.005(1) 8.918(9) IDV5 IDV10 13/187 0.073 0(0) 7(7) 

 IDV5 12/12 0.998 0(0) 10.88(11)  IDV11 13/17 1 0.005(2) 20.98(21)

 IDV7 30/1 0.9996 0.006(1) 2.967(3)  IDV13 13/13 0.980 0.033(2) 7.705(12)

 IDV11 42/18 1 0.005(1) 8.954(9)  IDV14 12/9 1 0.005(1) 20.98(21)

 IDV12 42/118 0.999 0.025(2) 8.99(11) IDV7 IDV8 1/90 0.999 0.052(1) 3.350(9)

 IDV13 42/846 0.999 0.006(1) 3.162(8)  IDV10 1/184 0.9996 0(0) 4.696(5)

 IDV14 42/12 1 0.005(1) 8.924(9)  IDV11 1/18 1 0.003(1) 2.986(3)

IDV2 IDV4 115/2 1 0(0) 11.54(12)  IDV12 1/31 0.985 0.128(1) 3.271(7)

 IDV5 12/12 1 0.0006(1) 10.23(12)  IDV13 1/147 0.9996 0.155(1) 1.965(4)

 IDV7 116/1 0.807 0.007(1) 3.807(4)  IDV14 1/16 1 0.0004(1) 2.988(3)

 IDV11 112/18 1 0.001(0) 11.61(12) IDV8 IDV11 90/18 1 0.005(1) 8.787(12)

 IDV12 77/77 0.106 0.183(1) 7.184(12)  IDV12 68/68 0.925 0.018(2) 11.59(27)

 IDV13 183/183 0.944 0.003(1) 3.089(8)  IDV13 90/145 0.784 0.303(2) 3.848(5)

 IDV14 113/16 1 0(0) 11.58(12)  IDV14 90/11 1 0.003(1) 9.365(12)

IDV4 IDV5 2/13 1 0.004(0) 20.92(21) IDV10 IDV11 188/18 1 0.0004(1) 14.14(15)

 IDV7 2/1 1 0.002(1) 2.999(3)  IDV12 184/68 0.855 0.005(1) 13.56(15)

 IDV8 2/90 1 0.005(1) 7.824(12)  IDV14 189/11 1 0.0004(1) 14.11(15)

 IDV10 2/189 1 0(0) 14.06(15) IDV11 IDV12 18/68 0.954 0.015(1) 9.876(21)

 IDV12 2/68 0.972 0.033(1) 10.13(21)  IDV13 18/141 1 0.008(1) 5.591(12)

 IDV13 2/142 1 0.007(1) 5.581(12) IDV12 IDV13 68/68 0.997 0.028(1) 4.154(12)

IDV5 IDV7 12/1 1 0.01(1) 6.706(7)  IDV14 68/11 0.946 0.012(1) 10.16(21)

 IDV8 13/13 0.999 0.009(1) 9.861(27) IDV13 IDV14 141/11 1 0.007(1) 5.455(12)
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