• Title/Summary/Keyword: Temporal profile

Search Result 120, Processing Time 0.029 seconds

A Direct Inversion Method to Remotely Measure the Concentration Profile of Suspended Sediment Using Acoustic Backscatterance

  • Lee, Tae-Hwan
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.48-50
    • /
    • 1995
  • The use of acoustics to measure the concentration profile of suspended sediment become increasing common. Field studies have shown the usefulness of remotely measuring the suspended sediment concentration with high spatial and temporal resolution. Techniques that allow for the conversion of the backscattered acoustic intensity into suspended sediment concentration have been developed concurrent with instrumentation. (omitted)

  • PDF

The improve of hemiplegic patients functional ambulation profile by forceful respiratory exercise (노력성 호흡운동을 통한 편마비환자의 기능적 보행지수 개선)

  • Kim Byung-jo;Bae Sung-soo;Hwang-bo Gak
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.1
    • /
    • pp.32-48
    • /
    • 2004
  • The purpose of this study was to evaluate the change of functional ambulation profile(FAP) and temporal-spatial gait parameters in hemiplegic patient by forceful respiratory exercise. 28 Hemiplegic patients due to stroke was randomized in 3 groups, forceful expiratory training(FET), forceful inspiratory training(FIT) and control group. In the experimental groups, ordinary physical therapy with forceful expiratory training and forceful inspiratory training for 20 minutes duration 3 times per week for 6 weeks were respectively performed. In the control group, only ordinary physical therapy was done. FAP and temporal-spatial gait parameters was measured at before and after experiments. The results of this experimental study were as follows : 1. In comparison of FAP before and after experiment, the FAP was significantly increased in the FET and FIT group (p<.01). In comparison of difference of FAP among 3 groups, there was the significant difference between the FIT group and the control group (p<.05). 2. The results of temporal-spatial gait parameters are as follows : 1) In comparison of gait velocity before and after experiment, the gait velocity was significantly increased in the FET and FIT group (p<.05). In comparison of difference of the gait velocity among 3 groups, there was the significantly difference between the FIT group and the control group (p<.05). 2) In comparison of gait cadence before and after experiment, the gait cadence was significantly increased in FIT group (p<.05). In comparison of the difference of the gait cadence among 3 groups, there was no significant difference between the FIT group and the control group (p>.05). Based on these results, it is concluded that the forced respiratory exercise program for 6 weeks can be improve the FAP and temporal-spatial gait parameters in hemiplegic patients. Therefore, the forced respiratory exercise is useful to improve the walking ability in hemiplegic patients.

  • PDF

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

Initial Second Harmonic Generation in Narrowband Surface Waves by Multi-Line Laser Beams for Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

  • Choi, Sungho;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • Acoustic nonlinearity of surface waves is an effective method to evaluate the micro damage on the surface of materials. In this method, the $A_1$ (magnitude of the fundamental wave) and $A_2$ (magnitude of the second-order harmonic wave) are measured for evaluation of acoustic nonlinearity. However, if there is another source of second-order harmonic wave other than the material itself, the linear relationship between $A_1{^2}$ and $A_2$ will not be guaranteed. Therefore, the second-order harmonic generation by another source should be fully suppressed. In this paper, we investigated the initial second-order harmonic generation in narrowband surface waves by multi-line laser beams. The spatial profile of laser beam was considered in the cases of Gaussian and square-like. The temporal profile was assumed to be Gaussian. In case of Gaussian spatial profile, the generation of the initial second-order harmonic wave was inevitable. However, when the spatial profile was square-like, the generation of the initial second-order harmonic wave was able to be fully suppressed at specific duty ratio. These results mean that the multi-line laser beams of square-like profile with a proper duty ratio are useful to evaluate the acoustic nonlinearity of the generated surface waves.

The study about location based service that temporal reasoning was applied (시간적 추론이 적용된 위치 기반 서비스에 관한 연구)

  • 김제민;박영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.91-93
    • /
    • 2004
  • 차세대 정보통신 기술의 가장 중요한 패러다임으로 '유비쿼터스 컴퓨팅' 이 새롭게 주목받고 있다 유비쿼터스 환경에서의 서비스 지원 시스템을 개발하기 위한 중요한 문제 중의 하나는 이동 객체(사용자)의 시간과 이벤트의 관계를 파악하고 위치 이동 데이터로부터 시공간 이동 패턴을 탐사하는 것이다. 본 논문에서는 유비쿼터스 환경 내에서 사용자에게 시간과 관련된 서비스를 적절히 제공하기 위해서 다음과 같은 연구를 한다. 첫째, 서비스 관점에서의 시간적 추론(Temporal Reasoning)이다. 각 사용자들은 각자의 취향을 가지고 있으며 이는 시간과 밀접한 관계를 가지고 있다. 시간과 관련된 사용자의 취향이 기록된 각 사용자 프로파일을 기반으로 서비스 지원 시스템은 적절한 서비스를 제공할 수 있다. 둘째, 사용자의 취향을 기록하기 위한 시간적 추론(Temporal Reasoning)이 다. 기록된 내 용들은 사용자 프로파일 (User Profile)을 생성하는데 도움을 준다.

  • PDF

The Droplet Size Distribution of Fan Spray at Different Surrounding Conditions (팬형분무의 주변조건에 따른 입자분포 변화)

  • Moon, Seok-Su;Choi, Jae-Joon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.611-619
    • /
    • 2007
  • In this study, the droplet size distribution of a slit injector at different surrounding conditions, such as air flow and fuel temperature, were investigated. Phase Doppler anemometry (PDA) was utilized to investigate the initial droplet size distribution and the effect of fuel temperature and air flow on droplet size distribution. The entrained air motion was also evaluated by the temporal velocity profile of droplets. When the air flow velocity increased, the small droplets were more entrained to the upper and central parts of the spray and this tendency was confirmed by plotting the temporal velocity profile of droplets. This entrainment of small droplets at high airflow velocities caused relatively small mean droplet size at upper and central parts of the spray and the large mean droplet size at downstream and edge of the spray, compared to that of low airflow velocities. The total mean droplet size, obtained by averaging the size of all droplets measured at all test locations, decreased when the high airflow velocities were applied. The increased fuel temperature, with an airflow velocity of 10m/s, caused reduced droplet size at all test locations. However, the decreased value of mean droplet size at high fuel temperatures was relatively higher at upper parts of the spray, compared to downstream, as a result of enhanced entrainment of small droplets to upper parts of the spray.

AN ELECTROMYOGRAPHIC STUDY OF THE MUSCLE ACTIVITY IN ANGLE'S CLASS II DIV. 1 MALOCCLUSION AND NORMAL OCCLUSION (근전도를 이용한 Angle씨 II급 1류 부정교합자와 정상교합자의 근육활성도에 관한 연구)

  • Kim, Tae-Soo;Baik, Hyoung-Seon
    • The korean journal of orthodontics
    • /
    • v.18 no.1 s.25
    • /
    • pp.89-104
    • /
    • 1988
  • This study was performed to investigate the relationships between the EMG activity of the masticatory muscles in Angle's Class II div. 1 malocclusion and normal occlusion. This study was ranged from age 12 to 14 year-old for 30 male subjects: 15 subjects were Angle's Class II div. 1 malocclusion, and 15 subjects were normal occlusion with acceptable profile. Their cephalometric measurement were analyzed, and the EMG recordings from the anterior temporal, posterior temporal, masseter, and orbicularis oris muscles were analyzed during rest position, mastication of peanuts, and swallowing. All data was recorded and statistically processed with the VAX-11/780 computer system. The results were as follows: 1. The activity of muscles at rest was highest in the posterior temporal muscle with normal occlusion, as well as in those with Class II div. 1 malocclusion, and the posterior temporal muscle activity of Class II div. 1 malocclusion was higher than that of normal occlusion. 2. During mastication, all muscle activities of Class II div. 1 malocclusion were recorded lower than those of normal occlusion, and the activity of the anterior temporal muscle was higher than that of the posterior temporal muscle in both types of occlusion. 3. As for the activity in orbicularis oris muscle, it was greater in opening phase than in closing phase during chewing cycle with both types of occlusion. 4. During swallowing, the activities of the anterior temporal, masseter, and orbicularis oris muscles of Class II div. 1 malocclusion were recorded lower than those of normal occlusion.

  • PDF

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

Development of Infiltration Model Considering Temporal Variation of Soil Physical Properties Under Rainfalls (토양의 물리적 특성의 변화를 고려한 강우의 침투모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • The purposes of this study are to develop three-layered Green-Ampt infiltration model considering temporal variation of physical properties of soil and to evaluate the model with field experiment on bare-tilled and soybean-growing soil plots under natural rainfalls. Infiltration tests were conducted on a sandy loam soil. The model has three-layered soil profile including a surface crust, a tilled layer, a subsoil and considers temporal variation of porosity, hydraulic conductivity, capillary pressure head on a tilled layer by natural rainfalls and canopy density variation of crop. Field measurement of porosity, average hydraulic conductivity and average capillary presure head on a tilled layer were conducted by soil sampler and air-entry permeameter at regular intervals-after tillage. It was found that temporal variation of porosity and average hydraulic conductivity might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity of a tilled soil. The model was calibrated by an optimization technique, Hooke and Jeeves method using hourly surface runoff data. With the calibrated parameters, the model was verified satisfactorily.

  • PDF

Tracking of Internal Waves Observed by SAR in the Time Series of Temperature Profile Data (시계열 등온선 자료에서의 SAR로 관측된 내부파의 추적 연구)

  • Kim, Tae-Rim
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.155-163
    • /
    • 2009
  • An abundance of internal waves is observed by SAR in the Yellow Sea during summer. They are small scaled internal waves and are not relatively studied well compared to the ones in the East/South China Sea. These internal waves should be considered in the study of physio-biological properties of the Yellow Sea because the mixing of the stratified surface water caused by internal waves during summer is important for ocean biological environment, and they also affect the sediment transport and acoustic signal transmission in the continental shelf region. To understand the characteristics of internal waves, it is important to get the spatio-temporal information of internal waves simultaneously by executing in-situ measurements as well as the SAR observation. This study tracks the internal waves observed by SAR in the time series of temperature profile data by analyzing simultaneously acquired in-situ measurement data and RADARSAT SAR image on 29 May 2002.