• Title/Summary/Keyword: Temporal distance

Search Result 266, Processing Time 0.03 seconds

Automatic Lung Registration using Local Distance Propagation (지역적 거리전파를 이용한 자동 폐 정합)

  • Lee Jeongjin;Hong Helen;Shin Yeong Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.1
    • /
    • pp.41-49
    • /
    • 2005
  • In this Paper, we Propose an automatic lung registration technique using local distance propagation for correcting the difference between two temporal images by a patient's movement in abdomen CT image obtained from the same patient to be taken at different time. The proposed method is composed of three steps. First, lung boundaries of two temporal volumes are extracted, and optimal bounding volumes including a lung are initially registered. Second, 3D distance map is generated from lung boundaries in the initially taken volume data by local distance propagation. Third, two images are registered where the distance between two surfaces is minimized by selective distance measure. In the experiment, we evaluate a speed and robustness using three patients' data by comparing chamfer-matching registration. Our proposed method shows that two volumes can be registered at optimal location rapidly. and robustly using selective distance measure on locally propagated 3D distance map.

The Effects of Information Security Vaccine User's Construal Level and Message Type on the Information Security Behavior (정보보안 백신 사용자의 해석수준과 메시지유형이 정보보안행동에 미치는 영향)

  • Lee, Kyong Eun;Kim, Jung Yoon;Hyun, Jung Suk;Park, Chan Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.6
    • /
    • pp.33-42
    • /
    • 2015
  • Based on the Construal Level Theory, this study aims to investigate how information security vaccine users' selection intentions differ from each other according to the selection time of information security vaccine, advertisement message types, and information security knowledge levels. For the foregoing, this study conducted an experiment by applying an experimental design of 2(knowledge level: high/low) ${\times}2$(temporal distances: short distance/long distance) ${\times}2$(advertisement message types: how(concrete)/why(abstract)) on computer security vaccine softwares. As a result, this study confirmed that the selection intentions about information security vaccines differed from each other according to the temporal distance and advertisement message type, and also varied according to the information security knowledge level. In conclusion, this study provides an implication that the consideration of well-timed persuasive message is especially important for the users at the high level of knowledge. Also, this research implies the necessity of development of abstract thinking ability based on temporal distance for the users at the low level of knowledge.

Spatio-temporal estimation of air quality parameters using linear genetic programming

  • Tikhe, Shruti S.;Khare, K.C.;Londhe, S.N.
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.83-94
    • /
    • 2017
  • Air quality planning and management requires accurate and consistent records of the air quality parameters. Limited number of monitoring stations and inconsistent measurements of the air quality parameters is a very serious problem in many parts of India. It becomes difficult for the authorities to plan proactive measures with such a limited data. Estimation models can be developed using soft computing techniques considering the physics behind pollution dispersion as they can work very well with limited data. They are more realistic and can present the complete picture about the air quality. In the present case study spatio-temporal models using Linear Genetic Programming (LGP) have been developed for estimation of air quality parameters. The air quality data from four monitoring stations of an Indian city has been used and LGP models have been developed to estimate pollutant concentration of the fifth station. Three types of models are developed. In the first type, models are developed considering only the pollutant concentrations at the neighboring stations without considering the effect of distance between the stations as well the significance of the prevailing wind direction. Second type of models are distance based models based on the hypothesis that there will be atmospheric interactions between the two stations under consideration and the effect increases with decrease in the distance between the two. In third type the effect of the prevailing wind direction is also considered in choosing the input stations in wind and distance based models. Models are evaluated using Band Error and it was observed that majority of the errors are in +/-1 band.

Applying Static Priority Policy to Distance-Constrained Scheduling (간격제한 스케줄이에 정적 우선순위 정책의 적용)

  • Jeong, Hak-Jin;Seol, Geun-Seok;Lee, Hae-Yeong;Lee, Sang-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1333-1343
    • /
    • 1999
  • 경성 실시간 시스템의 태스크들은 논리적으로 올바른 결과를 산출해야 하지만 또한 각자의 시간 제한 조건을 만족하여야 한다. 간격제한 스케줄링은 시간 제한 조건이 시간 간격 제한으로 주어지는 실시간 태스크들을 스케줄하기 위하여 도입되었다. 간격제한 스케줄링에서의 각 태스크들은 시간 간격 제한 조건을 갖는데, 이것은 태스크의 두 연속적인 수행의 종료시간에 대해 제한을 가한다. 다시 말해, 간격제한 스케줄링에서의 각 태스크 수행은 그 태스크의 직전 수행 완료 시간으로부터 발생하는 데드라인을 갖는다. 간격제한 태스크 스케줄링에 관한 많은 연구는 단순화 방법에 기초하고 있다. 그러나, 우리는 이 논문에서 단순화 방법을 사용하지 않고, 정적 우선순위 및 정적 분리 제한 정책을 채용한 새로운 간격제한 태스크 스케줄링 방법을 제안한다. 제안된 정적 할당 방법은 스케줄링 분석 및 구현을 매우 간단히 할 수 있으며, 또한 스케줄러의 실행시간 오버헤드를 줄일 수 있다.Abstract Tasks in hard real-time systems must not only be logically correct but also meet their timing constraints. The distance-constrained scheduling has been introduced to schedule real-time tasks whose timing constraints are characterized by temporal distance constraints. Each task in the distance-constrained scheduling has a temporal distance constraint which imposes restriction on the finishing times of two consecutive executions of the task. Thus, each execution of a task in the distance-constrained scheduling has a deadline relative to the finishing time of the previous execution of the task.Much work on the distance-constrained task scheduling has been based on the reduction technique. In this paper, we propose a new scheme for the distance-constrained task scheduling which does not use the reduction technique but adopts static priority and static separation constraint assignment policy. We show that our static assignment approach can simplify the scheduling analysis and its implementation, and can also reduce the run-time overhead of the scheduler.

The Effects of Positivity and Negativity of Present and Future on Temporal distance judgment and Time expression (현재와 미래의 긍정성과 부정성이 시간적 거리 판단과 시간표현에 미치는 영향)

  • Lee, GoEun;Shin, HyunJung
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.4
    • /
    • pp.265-281
    • /
    • 2018
  • This study examines the effect of present and future situation on the temporal distance estimation to the future. The effect of present and future situation on time expression was verified. In Experiment 1, an experiment was conducted to investigated the effects of positivity/negativity situation of the present and the future on the judgment of subjective the distance to a certain future time. The results are as follows. When the present is positive and the future is negative, the future looks closer than the objective temporal distance and comes faster, When the present is negative and the future is positive, the future looks farther and comes slower. On the other hand, when the present and the future are both negative, the future looks coming slower. And when the present and the future are both positive, the future is expected to come faster. In Experiment 2, the cognitive and emotional aspects of subjective time through time expressions. It can be said to be 'the time of perseverance' in the sense of time for effort. On the other hand, when the present is positive compared to the future, the time seems go fast and we generally prefer to use cognitive expressions such as 'fast' and emotional expressions such as 'near' and 'pleasant' and 'flutter'. It is 'the time of availability', which means the time to enjoy and utilize.

A Spatio-Temporal Variation Pattern of Oiling Status Using Spatial Analysis in Mallipo Beach of Korea (공간분석 기법을 이용한 만리포 유분의 시·공간 변동 패턴 분석)

  • Kim, Tae-Hoon;Choi, Hyun-Woo;Kim, Moon-Koo;Shim, Won-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.90-103
    • /
    • 2012
  • Mallipo is a representative beach contaminated by Hebei Spirit oil spill accident in December 2007. This study aims to compare the differences of two seasons (winter and summer) for the spatio-temporal variation patterns of oiling status in the whole area and divided five regions of Mallipo beach. In the whole area, the decreasing rate of average TPH (total petroleum hydrocarbon) in winter was twice greater than summer during four years. According to the spatial variation pattern analysis of oiling status using weighted mean center and weighted standard distance, the oil concentration was clustered on southwestern region in winter, however, the TPH was dispersed in the whole area in summer. Temporal variation pattern of TPH in each of Mallipo's five regions showed that TPH had been consistently decreased in winter, but oil concentration had not been changed in summer since 2009 except the southwestern region. Therefore, in order to evaluate and predict the progress of oiling status, it is needed to analyze the spatio-temporal variation pattern of TPH using spatial analysis after separating data into seasons (e.g., winter and summer). In addition, time series analysis is useful in the regional scales through spatial partitioning rather than the whole beach area for the understanding of temporal variation pattern.

Forecasting COVID-19 confirmed cases in South Korea using Spatio-Temporal Graph Neural Networks

  • Ngoc, Kien Mai;Lee, Minho
    • International Journal of Contents
    • /
    • v.17 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, a lot of efforts have been made in the field of data science to help combat against this disease. Among them, forecasting the number of cases of infection is a crucial problem to predict the development of the pandemic. Many deep learning-based models can be applied to solve this type of time series problem. In this research, we would like to take a step forward to incorporate spatial data (geography) with time series data to forecast the cases of region-level infection simultaneously. Specifically, we model a single spatio-temporal graph, in which nodes represent the geographic regions, spatial edges represent the distance between each pair of regions, and temporal edges indicate the node features through time. We evaluate this approach in COVID-19 in a Korean dataset, and we show a decrease of approximately 10% in both RMSE and MAE, and a significant boost to the training speed compared to the baseline models. Moreover, the training efficiency allows this approach to be extended for a large-scale spatio-temporal dataset.

Local-Based Iterative Histogram Matching for Relative Radiometric Normalization

  • Seo, Dae Kyo;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.323-330
    • /
    • 2019
  • Radiometric normalization with multi-temporal satellite images is essential for time series analysis and change detection. Generally, relative radiometric normalization, which is an image-based method, is performed, and histogram matching is a representative method for normalizing the non-linear properties. However, since it utilizes global statistical information only, local information is not considered at all. Thus, this paper proposes a histogram matching method considering local information. The proposed method divides histograms based on density, mean, and standard deviation of image intensities, and performs histogram matching locally on the sub-histogram. The matched histogram is then further partitioned and this process is performed again, iteratively, controlled with the wasserstein distance. Finally, the proposed method is compared to global histogram matching. The experimental results show that the proposed method is visually and quantitatively superior to the conventional method, which indicates the applicability of the proposed method to the radiometric normalization of multi-temporal images with non-linear properties.

Estimation of Human Location in Indoor Environment using BLE-based Beacon (BLE기반 비콘을 이용한 실내 환경에서의 사용자 위치추정)

  • Lim, Su-Jong;Sung, Min-Gwan;Yun, Sang-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.195-200
    • /
    • 2021
  • In this paper, we propose a method for a mobile robot to estimate a specific location of a service provision target using a beacon-tag for the purpose of providing location-based services (LBS) to users in an indoor environment. To estimate the location, the irregular characteristics and error factors of the received signal strength indicator (RSSI) generated from the beacon are analyzed, and the distance conversion function is derived from the RSSI data extracted by applying a Gaussian filter. Then, the distance data converted from the plurality of beacons estimates an indoor location through a triangulation technique. After that, the improvement in the location estimation is analyzed by applying the temporal confidence reasoning technique. The possibility of providing a LBS of a mobile robot was confirmed through a location estimation experiment for a plurality of designated locations in an indoor environment.

New Approach of Evaluating Poomsae Performance with Inertial Measurement Unit Sensors (관성센서를 활용한 새로운 품새 경기력 평가 방법 연구)

  • Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.199-204
    • /
    • 2021
  • Objective: The purpose of this study was to present a new idea of methodology to evaluate Poomsae performance using inertial measurement unit (IMU) sensors in terms of signal processing techniques. Method: Ten collegian Taekwondo athletes, consisting of five Poomsae elite athletes (age: 21.4 ± 0.9 years, height: 168.4 ± 11.3 cm, weight: 65.0 ± 10.6 kg, experience: 12 ± 0.7 years) and five breaking demonstration athletes (age: 21.0 ± 0.0 years, height: 168.4 ± 4.7 cm, weight: 63.8 ± 8.2 kg, experience: 13.0 ± 2.1 years), voluntarily participated in this study. They performed three different black belt Poomsae such as Goryeo, Geumgang, and Taebaek Poomsae repeatedly twice. Repeated measured motion data on the wrist and ankle were calculated by the methods of cosine similarity and Euclidean distance. Results: The Poomsse athletes showed superior performance in terms of temporal consistency at Goryeo and Taebaek Poomsae, cosine similarity at Geumgang and Taebaek Poomsae, and Euclidian distance at Geumgang Poomsae. Conclusion: IMU sensor would be a useful tool for monitoring and evaluating within-subject temporal variability of Taekwondo Poomsae motions. As well it distinguished spatiotemporal characteristics among three different Poomsae.