References
- Bai, Y., Tang, P., and Hu, C. (2018), KCCA transformationbased radiometric normalization of multi-temporal satellite images, Remote Sensing, Vol. 10, No. 3, pp. 1-21.
- Biday, S.G. and Bhosle, U. (2010), Radiometric correction of multitemporal satellite imagery, Journal of Computer Science, Vol. 6, No. 9, pp. 1027-1036. https://doi.org/10.3844/jcssp.2010.1027.1036
- Chavez Jr, P.S. (1988), An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data, Remote Sensing of Environment, Vol. 24, No. 3, pp. 459-479. https://doi.org/10.1016/0034-4257(88)90019-3
- Chen, Y., Sun, K., Li, D., Bai, T., and Li, W. (2018), Improved relative radiometric normalization method of remote sensing images for change detection, Journal of Applied Remote Sensing, Vol. 12, No. 4, pp. 1-16.
- Chen, X. Vierling, L., and Deering, D. (2005), A simple and effective radiometric correction method to improve landscape change detection across sensors and across time, Remote Sensing of Environment, Vol. 98, No. 1, pp. 63-79. https://doi.org/10.1016/j.rse.2005.05.021
- Choi, J.W. (2015), Unsupervised change detection for very high-spatial resolution satellite imagery by using object-based IR-MAD algorithm, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 4, pp. 297-304. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2015.33.4.297
- Du, Y., Teillet, P.M., and Cihlar, J. (2002), Radiometric normalization of multitemporal high-resolution satellite image with quality control for land cover change detection. Remote Sensing of Environment, Vol. 82, No. 1, pp. 123-134. https://doi.org/10.1016/S0034-4257(02)00029-9
- Elvidge, C.D., Yuan, D., Weerackoon, R.D., and Lunetta, R.S. (1995), Relative radiometric normalization of Landsat multispectral scanner (MSS) data using an automatic scattergram controlled regression, Photogrammetric Engineering and Remote Sensing, Vol. 61, No. 10, pp. 1255-1260.
- Helmer, E.H. and Ruefenacht, B. (2007), A comparison of radiometric normalization methods when filling cloud gaps in Landsat imagery, Canadian Journal of Remote Sensing, Vol. 33, No. 4, pp. 325-340. https://doi.org/10.5589/m07-028
- Hong, G. and Zhang, Y. (2008), A comparative study on radiometric normalization using high resolution satellite images, International Journal of Remote Sensing, Vol 29, No. 2, pp. 425-438. https://doi.org/10.1080/01431160601086019
- Liu, Y., Yano, T., Nishiyama, S., and Kimura, R. (2007), Radiometric correction for linear change-detection technique: Analysis in bi-temporal space, International Journal of Remote Sensing, Vol. 29, No. 22, pp. 5143-5157.
- Rabin, J., Peyre, G., Delmon, J., and Bernot, M. (2011), Wasserstein barycenter and its application to texture mixing, International Conference on Scale Space and Variational Methods in Computer Vision, 29 May-02 June, Ein-Gedi, Israel, pp.435-446.
- Rostami, M., Kolouri, S., Eaton, E., and Kim. K. (2019), SAR image classification using few-shot cross-domain transfer learning, The IEEE Conference on Computer Vision and Pattern Recognition, 16-20, June, Long Beach, California, pp. 1-9.
- Rubner, Y., Tomasi, C., and Guibas, L.J. (2000), The earth mover's distance as a metric for image retrieval, International Journal of Computer Vision, Vol. 40, No. 2, pp. 99-120. https://doi.org/10.1023/A:1026543900054
- Schott, J.R., Salvaggio, C., and Volhock, W.J. (1988), Radiometric scene normalization using pseudo-invariant features, Remote Sensing of Environment, Vol. 26, No. 1, pp. 1-14. https://doi.org/10.1016/0034-4257(88)90116-2
- Seo, D.K. and Eo, Y.D. (2018), Relative radiometric normalization for high-resolution satellite imagery based on multilayer perceptron, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 36, No. 6, pp. 515-523. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2018.36.6.515
- Seo, D.K., Kim, Y.H., Eo, Y.D., Park, W.Y., and Park, H.C. (2017), Generation of radiometric, phenological normalized image based on random forest regression for change detection, Remote Sensing, Vol. 9, No. 1163, pp. 1-21.
- Shakeri, M., Dezfoulian, M.H., and Khotanlou, H. (2018), Density-based histogram partitioning and local equalization for contrast enhancement of images, Journal of AI and Data Mining, Vol. 6, No. 1, pp. 1-12.
- Song, C., Woodcock, C.E., Seto, K.C., Lenny, M.P., and Macomber, S.Z. (2001), Classification and change detection using Landsat TM data: When and how to correct atmospheric effects?, Remote Sensing of Environment, Vol. 75, No. 2, pp. 230-244. https://doi.org/10.1016/S0034-4257(00)00169-3
- Sun, C.C., Ruan, S.J., Shie, M.C., and Pai, T.W. (2005), Dynamic contrast enhancement based on histogram specification, IEEE Transactions on Consumer Electronics, Vol. 51, No. 4, pp. 1300-1304. https://doi.org/10.1109/TCE.2005.1561859
- Yang, X. and Lo, C.P. (2000), Relative radiometric normalization performance change detection from multidate satellite images, Photogrammetry Engineering and Remote Sensing, Vol. 66, No. 8, pp. 967-980.
- Yuan, D. and Elvidge, C.D. (1996), Comparison of relative radiometric normalization techniques, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 51, No. 3, pp. 117-126. https://doi.org/10.1016/0924-2716(96)00018-4
- Zhong, C., Xu, Q., and Li, B. (2016), Relative radiometric normalization for multitemporal remote sensing images by hierarchical regression, IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 2, pp. 217-221. https://doi.org/10.1109/LGRS.2015.2506643