• Title/Summary/Keyword: Temporal and Spatial Distribution

Search Result 644, Processing Time 0.032 seconds

The Temporal and Spatial Distribution Analysis of Red Tide using GIS (GIS를 이용한 적조의 시-공간적 분포 분석)

  • Jeong Jong-chul
    • Spatial Information Research
    • /
    • v.13 no.3 s.34
    • /
    • pp.253-260
    • /
    • 2005
  • The aim of this study is to analyze the temporal and spatial distribution aspects of red tide using GIS techniques. The damage caused by red tide appears various aspects according to the species, concentration and spatial distribution of red tide plankton. Therefore, in order to prevent the damage of red tide it is important to understand the distribution characteristics of red tide by each species according to time and space. In this perspective, we analyzed the beginning outbreak area, spatial occurrence frequency and spatial migration of red tide. The spatial data used by this study was constructed by digitizing the red tide quick report and coupled with various attributes such as species, concentration and water temperature for construction of red tide database. We used various spatial analysis methods such as union, intersect, tracking, buffer and spatial interpolation for analyzing temporal and spatial characteristics of red tide. From the result of these spatial analyses, we could get the spatial information on the temporal and spatial distribution characteristics of red tide at the Southern Sea.

  • PDF

Investigation of Korean Precipitation Variability using EOFs and Cyclostationary EOFs (EOF와 CSEOF를 이용한 한반도 강수의 변동성 분석)

  • Kim, Gwang-Seob;Sun, Ming-Dong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1260-1264
    • /
    • 2009
  • Precipitation time series is a mixture of complicate fluctuation and changes. The monthly precipitation data of 61 stations during 36 years (1973-2008) in Korea are comprehensively analyzed using the EOFs technique and CSEOFs technique respectively. The main motivation for employing this technique in the present study is to investigate the physical processes associated with the evolution of the precipitation from observation data. The twenty-five leading EOF modes account for 98.05% of the total monthly variance, and the first two modes account for 83.68% of total variation. The first mode exhibits traditional spatial pattern with annual cycle of corresponding PC time series and second mode shows strong North South gradient. In CSEOF analysis, the twenty-five leading CSEOF modes account for 98.58% of the total monthly variance, and the first two modes account for 78.69% of total variation, these first two patterns' spatial distribution show monthly spatial variation. The corresponding mode's PC time series reveals the annual cycle on a monthly time scale and long-term fluctuation and first mode's PC time series shows increasing linear trend which represents that spatial and temporal variability of first mode pattern has strengthened. Compared with the EOFs analysis, the CSEOFs analysis preferably exhibits the spatial distribution and temporal evolution characteristics and variability of Korean historical precipitation.

  • PDF

Spatial and temporal distribution of driving rain on a low-rise building

  • Blocken, Bert;Carmeliet, Jan
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.441-462
    • /
    • 2002
  • This paper presents a practical numerical method to determine both the spatial and temporal distribution of driving rain on buildings. It is based on an existing numerical simulation technique and uses the building geometry and climatic data at the building site as input. The method is applied to determine the 3D spatial and temporal distribution of wind-driven rain on the facade a low-rise building of complex geometry. Distinct wetting patterns are found. The important causes giving rise to these particular patterns are identified : (1) sweeping of raindrops towards vertical building edges, (2) sweeping of raindrops towards top edges, (3) shelter effect by various roof overhang configurations. The comparison of the numerical results with full-scale measurements in both space and time for a number of on site recorded rain events shows the numerical method to yield accurate results.

Visual Representation of Temporal Properties in Formal Specification and Analysis using a Spatial Process Algebra (공간 프로세스 대수를 이용한 정형 명세와 분석에서의 시간속성의 시각화)

  • On, Jin-Ho;Choi, Jung-Rhan;Lee, Moon-Kun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.339-352
    • /
    • 2009
  • There are a number of formal methods for distributed real-time systems in ubiquitous computing to analyze and verify the behavioral, temporal and the spatial properties of the systems. However most of the methods reveal structural and fundamental limitations of complexity due to mixture of spatial and behavioral representations. Further temporal specification makes the complexity more complicate. In order to overcome the limitations, this paper presents a new formal method, called Timed Calculus of Abstract Real-Time Distribution, Mobility and Interaction(t-CARDMI). t-CARDMI separates spatial representation from behavioral representation to simplify the complexity. Further temporal specification is permitted only in the behavioral representation to make the complexity less complicate. The distinctive features of the temporal properties in t-CARDMI include waiting time, execution time, deadline, timeout action, periodic action, etc. both in movement and interaction behaviors. For analysis and verification of spatial and temporal properties of the systems in specification, t-CARDMI presents Timed Action Graph (TAG), where the spatial and temporal properties are visually represented in a two-dimensional diagram with the pictorial distribution of movements and interactions. t-CARDMI can be considered to be one of the most innovative formal methods in distributed real-time systems in ubiquitous computing to specify, analyze and verify the spatial, behavioral and the temporal properties of the systems very efficiently and effectively. The paper presents the formal syntax and semantics of t-CARDMI with a tool, called SAVE, for a ubiquitous healthcare application.

A Study on Spatial and Temporal Distribution Characteristics of Coastal Water Quality Using GIS (GIS를 이용한 연안수질의 시공간적 분포 특성에 대한 연구)

  • Cho, Hong-Lae;Jeoung, Jong-Chul
    • Spatial Information Research
    • /
    • v.14 no.2 s.37
    • /
    • pp.223-234
    • /
    • 2006
  • In order to examine spatio-temporal characteristics of coastal water quality, we applied GIS spatial analysis to the water quality data collected from observation points located on Korean coastal area during 1997$\sim$2004. The water quality parameters measured included: chlorophyll-a, pH, DO, COD, SS, dissolved inorganic nitrogen, dissolved inorganic phosphorous, salinity, temperature. The water quality data used in this paper was obtained only at selected sites even though they are potentially available at any location in a continuous surface. Thus, it is necessary to estimate the values at unsampled locations so as to analyze spatial distribution patterns of coastal water quality, Owing to this reason, we applied IDW(inverse distance weighted) interpolation method to water quality data and evaluated the usefulness of IDW method. After IDW interfolation method was applied, we divided the Korean coastal area into 46 sections and examined spatio-temporal patterns of each section using GIS visualization technique. As a result of evaluation, we can blow that IDW interpolation and GIS are useful for understanding spatial and temporal distribution characteristics of coastal water quality data which is collected from a wide area far many years.

  • PDF

Temporal and Spatial Traffic Analysis Based on Human Mobility for Energy Efficient Cellular Network

  • Li, Zhigang;Wang, Xin;Zhang, Junsong;Huang, Wei;Tian, Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.114-130
    • /
    • 2021
  • With the drastic growth of Information and Communication Technology (ICT) industry, global energy consumption is exponentially increased by mobile communications. The huge energy consumption and increased environmental awareness have triggered great interests on the research of dynamic distribution of cell user and traffic, and then designing the energy efficient cellular network. In this paper, we explore the temporal and spatial characteristics of human mobility and traffic distribution using real data set. The analysis results of cell traffic illustrate the tidal effect in temporal and spatial dimensions and obvious periodic characteristics which can be used to design Base Station (BS) dynamic with sleeping or shut-down strategy. At the same time, we designed a new Cell Zooming and BS cooperation mode. Through simulation experiments, we found that running in this mode can save about 35% of energy consumption and guarantee the required quality of service.

Estimating Spatio-Temporal Distribution of Climate Factors in Andong Dam Basin (안동댐 유역 기상인자의 시공간분포 추정)

  • Lim, Chul Hee;Moon, Joo Yeon;Lim, Yoon Jin;Kim, Sea Jin;Lee, Woo Kyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.57-65
    • /
    • 2015
  • This study investigates characteristics of time series spatial distribution on climate factors in Andong Dam basin by estimating precise spatio-temporal distribution of hydro-meteorological information. A spatio-temporal distribution by estimating Semi-Variogram based on spatial autocorrelation was examined using the data from ASOS and 7 hydro-meteorological observatories in Andong Dam basin of upper Nakdonggang River, which were installed and observed by NIMR(National Institute of Meterological Research). Also, temperature and humidity as climate variables were analyzed and it was recognized that there is a variability in watershed area by time and months. Regardless of season, an equal spatial distribution of temperature at 14 o'clock and humidity at 10 o'clock was identified, and nonequal distribution was noticed for both variables at 18 o'clock. From monthly spatial analysis, the most unequal distribution of temperature was seen in January, and the most equal distribution was detected in September. The most unequal distribution of humidity was identified in May, and the most equal distribution was seen in January. Unlike in forest, seasonal spatial distribution characteristics were less apparent;but temperature and humidity had respective characteristics in hydro-meteorology.

Spatial and Temporal Distribution of Zooplankton in Gwangyang and Sachon Bay, Korea

  • Kim Saywa
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.93-97
    • /
    • 2005
  • Zooplankton dynamics were investigated based on samples collected monthly during the period between November 1998 and October 1999 at 15 stations in Gwangyang and Sachon Bay. Zooplankters were quantitatively collected with horizontal towing through the surface and oblique hauling from the bottom to surface at each station, simultaneously. A total of 88 taxa of zooplankton were distributed and 60 taxa were identified to species. Copepods showed the prosperity in species number of 52 species. Number of taxa occurred in samples hauled obliquely always showed $2\~5$ more species than those captured in the surface except for stations near the Namhae bridge. In waters near Namhae bridge, fast current seemed to mix waters vertically. Seasonally these differences were more distinct in the spring and summer than those in other seasons possibly due to the stratification in warmer seasons. In quantitative aspects, differences between two layers seemed to be obscure. Spatial and temporal variations in species diversity of copepods showed more prosperity in pelagic realm than those in the surface. Our collection carrying out in day time might be one of the important reason to cause these differences in zooplankton dynamics between two layers.

Finite element modeling of laser ultrasonics nondestructive evaluation technique in ablation regime

  • Salman Shamsaei;Farhang Honarvar
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.219-236
    • /
    • 2023
  • In this paper, finite element modeling of the laser ultrasonics (LU) process in ablation regime is of interest. The momentum resulting from the removal of material from the specimen surface by the laser beam radiation in ablation regime is modeled as a pressure pulse. To model this pressure pulse, two equations are required: one for the spatial distribution and one for the temporal distribution of the pulse. Previous researchers have proposed various equations for the spatial and temporal distributions of the pressure pulse in different laser applications. All available equations are examined and the best combination of the temporal and spatial distributions of the pressure pulse that provides the most accurate results is identified. This combination of temporal and spatial distributions has never been used for modeling laser ultrasonics before. Then by using this new model, the effects of variations in pulse duration and laser spot radius on the shape, amplitude, and frequency spectrum of ultrasonic waves are studied. Furthermore, the LU in thermoelastic regime is simulated by this model and compared with LU in ablation regime. The interaction of ultrasonic waves with a defect is also investigated in the LU process in ablation regime. Good agreement of the results obtained from the new finite element model and available experimental data confirms the accuracy of the proposed model.

Temporal and Spatial Object Grouping for Distributed Multimedia Streaming (분산 멀티미디어 스트리밍을 위한 시/공간적 객체 그룹화)

  • Lee, Chong-Deuk
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.2
    • /
    • pp.113-122
    • /
    • 2007
  • Recently, there are many research interests in providing efficient, temporal and spatial distribution multimedia streaming service. This paper proposed a temporal and spatial object grouping method for distribution multimedia streaming service. The proposed method performs the grouping structure by filtering and mapping with the collected frame object in application domains and it's peformed by JM relationship with the mapped frame objects. The results show that the performance provides the better than the other methods.

  • PDF