• Title/Summary/Keyword: Temple Bell

Search Result 33, Processing Time 0.031 seconds

FEM Analysis of Factors Influencing the Beat Frequency of Japanese Temple Bells

  • Nakanishi, Takuji;Ogushi, Hajime;Yarai, Atsushi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2E
    • /
    • pp.35-44
    • /
    • 2008
  • The beat frequency is very important for the sound of Buddhist temple bells, but its concrete origins have not yet been fully clarified. In our research, we considered the beat of the bell at Hojobo Temple (Kanagawa Prefecture). Although its beat frequency has already been measured as 1.6 Hz, no satisfactory explanation has been offered for the factor that determines this value. In our previous research, we investigated the "Doza," the point where the bell is struck, and the "Obi," the vertical stripes around the bell, both of which are circumferential asymmetrical factors that can be visually recognized. Our investigations were carried out by using the Finite Element Method. These factors, however, could not sufficiently explain the beat frequency. Here, we first investigate the "Nyu," the many small projections on the bell, and the deviation between the centers of the inner and outer diameters of the bell. These two factors, however, were also found tobe insufficient explanations of the beat frequency. Through subsequent investigation, however, we finally clarified that the beat frequency's origin lies in the local dimension variation in the "Komazume," which is the bottom part of the bell as well as its thickest part.

Digilog Book: Augmented Reality based Temple Bell Experience (디지로그 북: 증강현실 기반 범종 체험)

  • Ha, Tae-Jin;Lee, Young-Ho;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.456-460
    • /
    • 2008
  • Digilog Book lets users feel analog book and digital contents by combining each advantage of analog sensibility and digital sensation. This paper mentions about technical details for implementing an example of Digilog book: a temple bell experience system. Our system includes providing multisensory feedback to users, substituting fiducial marker with figure marker, presenting visual effect when a temple bell appearing on a 2D plane, pushing augmented buttons using bare fingers for observation of the bell, and lastly pointing a specific part of the bell for obtaining description on that part. The implemented temple bell experience system can motivate users to experience cultural heritages of our country as educational contents.

  • PDF

Metallurgical Observation of the Buddhist Bell of Youngmoon Mountain Sangwonsa Temple (용문산 상원사 범종의 금속학적 고찰)

  • Doh, Jungmann;Park, Bangju;Lee, Jungil;Hong, Kyungtae
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.829-838
    • /
    • 2012
  • The microstructure, chemical composition, and lead isotope ratio of the Buddhist bell of Yongmoon Mountain Sangwonsa temple, which was selected as one of the three great bells of Korea by Japanese historians, were analyzed in order to estimate the origin of the material and the time of casting. The microstructure of the temple bell was composed of a copper matrix phase with ${\alpha}$, a face centered cubit lattice structure, a ${\delta}$ phase with $Cu_{41}$ $(Sn,Ag,Sb)_{11}$ as the chemical structural formula, dispersed lead and $Cu_2S$ particles, and locally agglomerated fine particles. Through analysis of the chemical composition of the bell, a criterion (Pb: 0-3.0 wt%, Sn: 10-15 wt%) for distinguishing the bells of the Shilla dynasty from the bells of the Koryo Chosun dynasty is proposed. Examining the lead isotope ratio of $^{207}Pb/^{206}Pb$ and $^{208}Pb/^{206}Pb$ of the Buddhist bell of Sangwonsa temple proved that the bell was fabricated using raw materials in South Korea, which led to the conclusion that the bell was cast in Korea and the top board of the bell has been damaged by an unknown individual. The criteria of distinguishing the bells from the Shilla dynasty from the bells of the Koryo Chosun dynasty presented for the first time in this research is expected to aid in identifying and estimating the previously unclear production years of other bells.

Transforming the Wongaksa Bell[Buddhist Bell] to the Bosingak Bell[Court Bell]: An Example of the Debuddhismization during the Joseon Dynasty (원각사종(圓覺寺鐘)에서 보신각종(普信閣鍾)으로 -조선시대 탈불교화의 일례-)

  • Nam Dongsin
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.104
    • /
    • pp.102-142
    • /
    • 2023
  • The Bronze Bell of Wongaksa Temple, also known as the Bosingak Bell, was produced in 1468 during the reign of King Sejo for dedication at Wongaksa Temple in the middle of the capital Hanyang in celebration of the tenth anniversary of his accession to the throne. It is currently heavily damaged and cannot be struck. This paper focuses on the man-made damage inflicted on the Bosingak Bell and explores when, why, and by whom the bell was damaged along with the historical significance of this damage. In the first section, the relevant literature is reviewed and the problems concerned, research perspective, and methodology are presented. The history of related theories is investigated focusing on the relationship between Bosingak Bell and Wongaksa Bell. The perspective that Bosingak Bell and Wongaksa Bell are the same is introduced. My discussion will be developed from this perspective. In the second section, the background to King Sejo's construction of Wongaksa Bell is examined. Specifically, the bells commissioned by the kings of the early Joseon era are divided into court bells (jojong) and Buddhist bells (beomjong). They total four court bells and three Buddhist bells. The former are the Jongnu Tower Bell commissioned by King Taejo, Donhwamun Gate Bell by King Taejong, Gwanghwamun Gate Bell by King Sejong, and Sajeongjeon Hall Bell by King Sejo. The latter are the bells of Yongmunsa, Heungcheonsa (or Jeongneungsa) and Wongaksa Temples, all of which were made during the reign of King Sejo. Sejo also made Wongaksa Bell and gave it the meaning that the monarch and the Buddha both wish to enlighten the people through the sound of the bells. In the third section, traces of the man-made damage done to Bosingak Bell are closely examined. By observing the current condition of Bosingak Bell and comparing it with the contemporaneous Heungcheongsa Bell (1462) and Bongseonsa Bell (1469), the components of Bosingak Bell that were damaged can be identified. The damaged parts are again divided into Buddhist elements and non-Buddhist elements. The former includes the reversed lotus petals on the shoulder band, four standing bodhisattvas, and the inscription of the bell composed by Choe Hang. The latter includes lists of chief supervisors (dojejo). I describe the phenomenon of deliberately damaging Buddhist elements on bells as "effacement of Buddhism," meaning Buddhist images and inscriptions are eliminated, and I note the prevailing rejection of Buddhism theory among Neo-Confucianists as its ideological root. The erasure of non-Buddhist images was probably caused by political conflicts such as Yeonsangun's purge in 1504. Since both ideological and political factors played a role in the changes made to Bosingak Bell, the damage was possibly done between the Purge of 1504 and the abdication of Yeonsangun in 1506. Chapter four traces the transformation of the Buddhist bell of Wongaksa Temple into the Bosingak court bell. Finally completed in 1468, the Wongaksa Bell only served its role as a Buddhist bell at related services for a relatively brief period of 36 years (until 1504). Wongaksa Temple was closed down and the bell lost its Buddhist function. In 1536, it was moved from Wongaksa Temple to Namdaemun Gate, where it remained silent for the next 90 years until it was struck again in November 1594. However, after the destruction of the Jongnu Bell in a fire during the Japanese Invasions of Korea (1592-1598), the Buddhist bell from Wongaksa Temple became a court bell. The Wongaksa Temple bell was relocated to Jongnu Tower in 1619, traveling through Myeongdong Pass. From then on, as the official Jongnu Bell (later renamed Bosingak Bell), it was regularly rung at dawn and dusk every day for nearly 300 years until 1908, when Japanese authorities halted the ritual. The transformation of the Wongaksa Bell (a Buddhist bell) to Bosingak Bell (a court bell) means that the voice of the Buddha was changed to the voice of the king. The concept of "effacement of Buddhism," evident in the transformation of Wongaksa Bell to Bosingak Bell, was practiced widely on almost every manifestation of Buddhism throughout the Joseon period. In short, the damage evident in Bosingak Bell underscores the debuddhismization in Korean society during the Joseon Dynasty.

Non-destructive Analysis of Bronze Bell in the Heungguksa Temple (흥국사 동종의 비파괴 조사 분석)

  • Hong, Jong-Ouk;Lee, Jea-Jin
    • 보존과학연구
    • /
    • s.31
    • /
    • pp.131-140
    • /
    • 2010
  • This study shows the comparison of chemical compositions of main component with other bronze bells after the research on the component analysis by non-destructive XRF analysis. There are shrinkage cavities caused by the shrinkage defect and pores with pollutants on Bronze Bell of Heungguksa Temple with gamma radiation images and 77.3% of copper, 8.4% of tin and 10.9% of lead were determined as the main components of it with XRF analysis The tin content of Brozen Bell of Heungguksa Temple is less than those (11~18%) of other bronze bells but the lead content of that is higher. The lead content of it shows 10.91% which is quite high while generally the lead contents of other bells were controlled lower than 2.1%. Buddhist bells have the different lead content according to the period. The lead content was low until Silla Dynasty and Unified Silla period but it has been getting higher since some point of Koryo Dynasty. It is assumed that expensive copper and tin were replaced with lead.

  • PDF

Metallurgical study of bronze bells excavated from the Miruksa (temple) site in Iksan (익산 미륵사지 출토 동종의 금속학적 연구)

  • Cho, Nam-chul;Huh, Il-kwon;Kang, Hyung-tae
    • 보존과학연구
    • /
    • s.27
    • /
    • pp.5-22
    • /
    • 2006
  • Mireuksa is a temple that was established in the Baekjea Period and continued around to the 16thcentury. The sites of the temple throughout diverse periods such as the United Shilla Period, KoryuPeriod, and Chosun Period including the one of the early temple in the late Baekjea Period were discovered. In those temple sites, there were lots of diverse artifacts discovered including artifacts in the Bronze Age. In this study, the compositions of four bronze bells excavated from Mireuksa site in Iksan were analyzed and the manufacturing technique of bronze bells was studied through the observation of microstructure. Also, the analytical cases of ancient bronze bells were collected and compared. Furthermore, the provenance study of the bronze bells site was attempted with the Pbisotope ratio. The results aim to offer crucial keys for discovering the aspect of society as well as information about the origin, development, and the route of propagation of ancient technologies. Bronze bell No. 1 showed an unexpected composition as Cu was found 98.5% in it. There were shown twins which were created by annealing and an even phase in the fine grains. It was also shown that bronze bell No. 2 and 4 had a high content of Pb although they showed a similar composition with general bronze bells in terms of Sn content. As shown in the analysis characteristics table of Korean bronze bell of this study, the ancient bronze bell used Pb of which content was limited to 2.12% in general, however, the results showed 15.5% and 13.2% respectively, which is an excessive amount. Asa result of analyzing inclusion in the microstructure of bronze bell No. 2, it was found that sulfide group mineral was used since there appeared S(14.55%). Also, it was proven that $CuFeS_2$ or$Cu_5FeS_4$ was used as a raw material because there was a small amount of Fe. As a result of analyzing inclusion of bronze bell No. 4, the bronze bell sample contained S(13.43%) and it is thought that sulfide group mineral was used, however, it had no Fe. Therefore, it is not connected to $CuFeS_2$ which is the main mineral of Korea. In addition, a strain line was shown with processing in bronze bell No. 2 and 4. As a result of provenance study of bronze bell No. 2 and 4 using the Pb isotope ratio, they or their raw materials are estimated to come from the southern China. Bronze bell No. 3 showed only Cu and Sn, and it is featured with a relatively low amount of Sn(6.63%). The microstructure has only phase, andintergranular corrosion was highly in progress.

  • PDF

The study of handiwork techniques of ancient granule (고대 누금 세공기법 제작기술 연구)

  • Moon, Whan-Suk;Cho, Nam-Chul;Hong, Jong-Ouk
    • 보존과학연구
    • /
    • s.22
    • /
    • pp.81-92
    • /
    • 2001
  • The replica experiment of golden bell excavated from the East Three-Story Pagoda at the Gamunsa temple was carried out in order to know the handiwork technique of ancient granule. The size of 0.3mm granule was attached to the golden bell which was 3.4mm bell body by soldering. When we tried to attach the granule by a modern metalwork, we could know that this technique was hard to make the replica bell. We could prove how to adhere strongly to the golden granule by tension testing. First of all, we made the soldering of the same composition as the golden bell excavated from the Gamunsa temple and then prepared specimens for testing to measure the tension strength. It showed that the broken position was not a soldering part. This result showed how the ancient granule could maintain without a break for a long time.

  • PDF

The Whereabout of the Bell Imperial-Dragon-Temple (皇龍寺 49萬소斤 巨鐘은 어디로)

  • Lee, Byung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 1997
  • Recently, the search for the whereabout of the huge Bell Imperial-Dragon-Temple becomes a great issue. If it happens to be found out and ringing at the original location of the Bell in Kyungjoo City, the Bell might be a great national treasure and lasting to the eternity with her beautiful sound. The Bell was so huge that the total weight of the raw material put into crucibles was 497,581 Kun (289 tons), the shoulder weight 10.3 Chuk (3.14 m) and the maximum thickness 9 Chon (27.4 cm). The Bell was erected in 754 in Shilla Dynasty and was assumed to be lost during the war time by the 3rd invasion of Mongolians (1235~8). However, the author found out that the huge Bell was recast into a new small Bell (8.1 ton) in 1103 by the people of Koryu Dynasty and then the new small Bell was hung in the same position as in the original huge Bell. 135 years later, the new small Bell was carried out by Mongolian forces as a spoil of war from Kyungjoo to the Bay Tonghaegoo, through the saddle point of Mountain Toham, Yangbuk and Riber Great Bell. At the bay, Mongolian forces wished to bring back the Bell to Mongolia by a ship, but they dropped the Bell into the sea by accident. So, if this was the case, the bell at the seabed may be the new small bell (7.4 ton) but not the original huge Bell (41.0 ton) For the evaluation of missing data of the two bells, the author sets up two equations relating all the dimensions and their weights, which seems to be a useful guide to the design of bells. The results of the evaluation of the Bells are as follows. The huge Bell The new small Bell Weight 41.0 ton 7.4 ton Shoulder ht. 3.14 m 2.07 m Mouth diameter 2.468 m 1.546 m Max. thickness 27.4 cm (9 Chon) 11.9 cm (3.9 Chon)

  • PDF

A Study on the Units of Measuring Scale in Hwangnyongsa Temple Planning (황룡사 가람계획 척도 연구)

  • Kim, Sookyung
    • Journal of architectural history
    • /
    • v.25 no.4
    • /
    • pp.65-73
    • /
    • 2016
  • This paper aimed to identify the units of measuring scale in Hwangnyongsa temple planning with the published excavation survey reports. Hwangyongsa temple site was planned under Silla Capital's urban planning in 6~7C, its full size was $800{\times}800$, and main temple was $400{\times}515$ of Goguryeo's system of measurement. Main hall was located in the center of Hwangnyongsa temple site, and its location could be seen that there was the arrangement of main temple divided into 3 : 2. Building plan measuring units proved to be 351~356mm and 294~ 296mm by analyzing measured data of remains. Lecture hall and Wooden pagoda were rebuilt by using the ancestors' units of measuring scale again and Bell hall was not planned by Tang's system of measurement in middle of 8C. In this respect, it would be important to have a deliberate attitude and lay down stereotypes on research of the units of measuring scale in ancient architecture.