• Title/Summary/Keyword: Template synthesis

Search Result 236, Processing Time 0.023 seconds

The Amount of Telomeric DNA and Telomerase Activity on Cattle Cells (소의 생리적 특성에따름 세포내 텔로미어 함량과 텔로머레이스 활성도 분석)

  • Choi, Duk-Soon;Cho, Chang-Yeon;Sohn, Sea-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.445-456
    • /
    • 2008
  • Telomeres consist of TTAGGG tandem repeated DNA sequences with specific proteins and locate at chromosome ends. Telomeres are essential for chromosome stability and are related with cell senescence, apoptosis and cancer. Telomerase is a ribonucleoprotein which has a template for the synthesis of telomeric DNA. This study was carried out to analyze the amount of telomeric DNA and telomerase activity in cattle cells. Analysis of the quantity of telomere in lymphocytes was done at different ages, sex and among Korean cattle and Holstein breeds. The telomerase activity was also analyzed in liver, brain, heart, kidney, and testis tissues of fetal calf and of 18 month old cattle. The amount of telomeres in lymphocytes and other tissue cells was analyzed by Quantitative-Fluorescence in situ Hybridization (Q-FISH) technique using a telomeric DNA probe. Telomerase activity was analyzed by Telomeric Repeat Amplification Protocol assay (TRAP). The amount of telomeric DNA on the lymphocytes during the whole life span was decreased along with age. Quantity of telomeres in Korean cattle was significantly higher than that in Holstein breed. The amount of telomeric DNA in males was significantly higher than that in females. Telomerase activity was up-regulated in most bovine tissues during fetal stage, but was down-regulated in most tissues at mature 18 month age except the testis cells. This study indicates that the amount of telomeres and telomerase activity of cells can be used as an age marker or/and a physiological marker of cattle.

Synthesis and Electrochemical Properties of Nitrogen Doped Mesoporous TiO2 Nanoparticles as Anode Materials for Lithium-ion Batteries (질소도핑 메조다공성 산화티타늄 나노입자의 합성 및 리튬이온전지 음극재로의 적용)

  • Yun, Tae-Kwan;Bae, Jae-Young;Park, Sung-Soo;Won, Yong-Sun
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Mesoporous anatase $TiO_2$ nanoparticles have been synthesized by a hydrothermal method using a tri-block copolymer as a soft template. The resulting $TiO_2$ materials have a high specific surface area of $230\;m^2/g$, a predominant pore size of 6.8 nm and a pore volume of 0.404 mL/g. The electrochemical properties of mesoporous anatase $TiO_2$ for lithium ion battery (LIB) anode materials have been investigated by typical coin cell tests. The initial discharge capacity of these materials is 240 mAh/g, significantly higher than the theoretical capacity (175 mAh/g) of LTO ($Li_4Ti_5O_{12}$). Although the discharge capacity decreases with the C-rate increase, the mesoporous $TiO_2$ is very promising for LIB anode because the surface for the Li insertion is presented significantly with mesopores. Nitrogen doping has a certain effect to control the capacity decrease by improving the electron transport in $TiO_2$ framework.

Synthesis of New Black Pigment; Carbon Black Pigment Capsulated into the Meso-pore of Silica as Black Pigment in Cosmetic (새로운 Black Color의 합성;화장품에서 블랙 색소로서 Meso-pore Silca에 캡슐레이션된 Carbon-black Silica)

  • Hye-in, Jang;Kyung-chul, Lee;Hee-chang , Ryoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.189-195
    • /
    • 2004
  • Carbon black have not been used as pigment material in cosmetic because of very low density and dispersity, but carbon black have applicable character as black pigment because of non-toxic, stable physico-chemical property, and black colority. In this study, mesoporous silica samples were synthesized by sol-gel reaction using surfactants-template method; TEOS (tetraethoxysilane) - a) PEO/lecithin, b) PEO/polyethylene glycol, c) lecithin/polyethylene glycol in ethanol/water solution. Synthesized organic-inorganic hybrid - silica were heat-treated in N2 condition at 500$^{\circ}C$. Mesoporous silica with black carbon in pore have the effective density and show the good dispersity in both hydrophilic and hydrophobic solvent. Properties of the samples were measured; specific surface area (750㎡/g) and pore size (4-6nm) using BET, pore structure (cylindrical type) using XRD, morphology (spherical powder with 0.1-0.5$\mu\textrm{m}$ partical size) of the samples using SEM. Carbon-silica black color applied to mascara, it shows a dark black colority and good dispersity as compared with the general black color titania pigment. Moreover, it is possible to control the density of black color pigment because it is possible to control pore volume and particle size of mesoporous silica properly. It show the good volume effects in mascara. That is why possible to apply all kinds of cosmetic products.

Preparation and Characterization of Cu/MCM-41 Mesoporous Catalysts for NO Removal (Cu/MCM-41 메조포러스 촉매 제조 및 NO 제거 특성)

  • Park, Soo-Jin;Cho, Mi-Hwa;Kim, Seok;Kwon, Soo-Han
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.737-741
    • /
    • 2005
  • In this study, the effect of copper content on the NO removal efficiency by Cu/MCM-41 has been investigated. MCM-41 was prepared by hydrothermal synthesis using a gel mixture of colloidal silica solution and cetyltrimethylammonium. Cu/MCM-41 was manufactured with copper content (5, 10, 20, and 40%) in Cu(II) acetylacetonate. The surface properties of MCM-41 were investigated by using pH, XRD, and FT-IR analyses. $N_2/77K$ adsorption isotherm characteristics, including the specific surface area and micropore volume were studied by BET's equation and Boer's t-plot methods. NO removal efficiency was confirmed by gas chromatography technique. From the experimental results, the MCM-41 was analyzed to have the surface functional groups of Si-OH and Si-O-Si and the characteristic diffraction lines (100), (110), (200), and (210) corresponding to a hexagonal arrangement structure. The copper content supported on MCM-41 appeared to increase the NO removal efficiency in spite of decreasing the specific surface areas or micropore volumes. Consequently, it was found that the copper content in Cu/MCM-41 played an important role in improving the NO removal efficiency, which was mainly attributed to the catalytic reactions.

Size Effect of Hollow Silica Nanoparticles as Paint Additives for Thermal Insulation (단열 페인트 첨가제로써 중공형 실리카 나노입자의 크기에 따른 효과)

  • Kim, Jisue;Kim, Younghun
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.18-23
    • /
    • 2022
  • Using air as an insulator due to its low heat transfer coefficient has been studied and has been widely commercialized to save energy in the field of thermal insulation technology. In this study, we analyzed the heat insulating effect of hollow silica nanoparticles mixed in non-uniform size, and the maximum heat insulating efficiency of these particles given the limited number of particles that can be mixed with a medium such as paint. The hollow silica nanoparticles were synthesized via a sol-gel process using a polystyrene template in order to produce an air layer inside of the particles. After synthesis, the particles were analyzed for their insulation effect according to the size of the air layer by adding 5 wt % of the particles to paint and investigating the thermal insulation performance by a heat transfer experiment. When mixing the particles with white paint, the insulation efficiency was 15% or higher. Furthermore, the large particles, which had a large internal air layer, showed a 5% higher insulation performance than the small particles. By observing the difference in the insulation effect according to the internal air layer size of hollow silica nanoparticles, this research suggests that when using hollow particles as a paint additive, the particle size needs to be considered in order to maximize the air layer in the paint.

Analysis of the Amount of Telomeric DNA and Telomerase Activity on Preimplantation Mouse Embryoic Cells (마우스 수정란의 초기 배 발생단계별 Telomeric DNA의 양적 분석과 Telomerase 활성도 분석)

  • Kang M. Y.;Han M. S.;Lee S. C.;Kim J. H.;Sohn S. H.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Telomeres consisting of (TTAGGG)n tandem repeat DNA sequences and associated proteins are essential for chromosome stability and related with cell senescence, apoptosis and cancer. The telomerase is a ribonucleoprotein which act as a template for the synthesis of telomeric DNA. This study was carried out to identify the distribution of telomeres on mouse chromosomes and also to analyze the amount of telomeres and telomerase activity of mouse embryos at early embryonic stages. Germ cells and early embryos from 1 cell to blastocyst stage were analyzed. The amount of telomeres was analyzed by quantitative fluorescence in situ hybridization technique(Q-FISH) using a human telomeric DNA probe, and telomerase activity was measured by telomeric repeat amplification protocol assay(TRAP). In results, the telomeres on mouse chromosomes were distributed at the ends of all autosomes and sex chromosomes. Although the quantity of telomeres varied among chromosomes, most of chromosomes had higher amount in q-arm telomeres than in p-arm telomeres. The results of Q-FISH indicated that the relative amount of telomeres of mouse embryos in each embryonic stage was approximately the same except the higher amount in blastocysts. Using TRAP assay on mouse embryos, telomerase activity was detected in all preimplantation stages from mature oocytes to blastocysts. Especially the telomerase activity was significantly increased at the morula and blastocyst stage. In conclusion, there may be a close association between the amount of telomeres and telomerase activity in early embryonic stages, and analysis of telomere quantity and telomerase activity on early development will be helpful for the investigation of embryogenesis and embryonic cell differentiation in mice.