• Title/Summary/Keyword: Tempering

Search Result 313, Processing Time 0.025 seconds

A Study on the Wear Behavior of SPS5 Steel Surface-Treated by Induction Hardening Method (고주파 열처리에 따른 SPS5 강의 마모특성 변화에 대한 연구)

  • Kim, Min-Ho;Rhee, Kyong-Yop;Paik, Young-Nam;Hong, Jai-Sung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.74-79
    • /
    • 2006
  • In this study, the tempering effect on the wear characteristics of induction-hardened SPS5 steel was investigated. For this purpose, three tempering conditions were applied to control the hardness of heat-treated SPS5 steel. Ball-on-disk wear tests have been performed using zircornia balls on the tempered specimens to determine the variation of wear characteristics. The results showed that friction coefficient decreased with increasing hardness for induction hardening conditions. This seems to occur because real contact area between specimen and mating ball was affected by the specimen hardness.

Estimation of Die Service Life for Die Cooling Method in Hot Forging (금형냉각법에 따른 열간 단조 금형의 수명 평가)

  • 김병민;김동환
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.408-413
    • /
    • 2003
  • Dies may have to be replaced for a number of reasons, such as changes in dimensions due to die wear or plastic deformation, deterioration of the surface finish, break down of lubrication and cracking or breakage. In this paper, die cooling methods have been suggested to improve die service life considering die wear and plastic deformation in hot forging process. The yield strength of die decreases at higher temperatures and is dependent on hardness. Also, to evaluate die life due to wear, modified Archard's wear model has been proposed by considering the thermal softening of die expressed in terms of the main tempering curve. It was found that the use of die with cooling hole was more effective than that of direct cooling method to increase the die service life for spindle component.

Effect of Microstructure on the Damping Capacity of 12Cr Martensitic Heat-resisting Steel (12Cr 마르텐사이트계 내열강의 감쇠능에 미치는 미세조직의 영향)

  • Lee, S.M.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2010
  • This study was carried out to investigate the effect of microstructure on the damping capacity of 12Cr martensite heat-resisting steels, in case of the specimen with martensite phase contained the volume faction of ferrite phases, under 5%. The damping capacity was decreased with the increase of solution treatment temperature and time. While it was increased with the increase of tempering temperature and time. The damping capacity was higher in case of specimen with martensite single phase structure than the specimen with martensite phase contained of ferrite phases.

A Study on the Heat Treatment Condition for Effective Manufacturing of SUS416 Steel (SUS416강의 효과적 가공을 위한 열처리 조건에 관한 연구)

  • Kim H. G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Optimal heat treatment process in martensitic stainless steel such as SUS416 is investigated. The approach is based on the combination of the interpolation and extrapolation method of a standard heat treatment technology with the principle of quenching and tempering temperature difference. The relationship of the macroscopic structure, fracture toughness and ductility as well as the hardness and strength are considered to induce a simple rule to apply with feasibility. Consequently, Optimal heat treatment condition in martensitic stainless steel is proposed and is shown the better quality. It was found that the smaller pain size of microstructure gives the enhanced fracture toughness and ductility.

A Study on Prediction of Die Life of Warm Forging by Wear(I) -Construction of Die Wear Model- (마멸에 의한 온간단조의 금형수명 예측에 관한 연구(I) -금형 마멸 모델의 정립-)

  • 강종훈;박인우;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.88-93
    • /
    • 1998
  • The service life of tools in metal forming process is to a large extent limited by wear, fatigue fracture and plastic deformation. In warm forging processes wear is the predominant factor for operating lives of tools. To predict tool life by wear, Archard's wear model is generally applied. Usually hardness of die is considered to be a function of temperature in Archard's wear model. But hardness of die is a function of not only temperature but also operating time of die. To consider softening of die by repeated operations, it is necessary to express hardness of dies by a function of temperatures and operating time. By experiment of reheating of dies, die softening curves were obtained. Finally modified Archard's wear model in which hardness of die was expressed as a function of main tempering curve was proposed.

  • PDF

Effect of Post Weld Heat Treatment on the Mechanical Properties of 2.25Cr-1Mo Steels Valves and Piping (용접후열처리가 2.25Cr-1Mo 강 밸브 및 배관재 물성에 미치는 영향)

  • Kim, Hongdeok;Lee, Yoseob;Lee, Jaegon;Lee, Kyoungsoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • The effects of post weld heat treatment(PWHT) on the mechanical properties of 2.25Cr-1Mo steels were investigated. As the PWHT temperature or holding time increased, the strength of low alloy steels progressively decreased due to softening process. After the conventional PWHT, the strength was larger than the minimum value of materials specification. The Charpy impact energy was hardly affected by the conventional PWHT. The trend of mechanical properties was analyzed in terms of tempering parameter. Most materials replaced from a power plant met the requirements of materials specification except for one heat. Same heat of materials with low impact energy were attributed to the voids formed during casting process.

A study on the wear behavior of spring steel surface-treated by induction hardening method (고주파로 열처리된 스프링강의 마모특성)

  • Kim M.H.;Rhee K.Y.;Paik Y.N.;Oh T.Y.;Hong J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.409-410
    • /
    • 2006
  • In this study, the tempering effect on the wear characteristics of induction-hardened SPS5 steel was investigated. For this purpose, three tempering conditions were applied to control the hardness of heat-treated SPS5 steel. Ball-on-disk wear tests have been performed using zircornia balls on the tempered specimens to determine the variation of wear characteristics. The results showed that friction coefficient decreased with increasing hardness for induction hardening conditions. This seems to occur because real contact area between specimen and mating ball was affected by the specimen hardness.

  • PDF

Tool life Evaluation of Hot Forging about Plastic Deformation and Wear (소성변형 및 마멸을 고려한 열간 단조 금형의 수명 평가)

  • 이현철;김동환;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.163-168
    • /
    • 2002
  • Hot forging is widely used in the manufacturing of industry machine component. The mechanical, thermal load and thermal softening which are happened by the high temperature in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. These are one of the main factors affecting die accuracy and tool life. That is because hot forging process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forging tool by wear and plastic deformation analysis considering tempering parameter has been carried out for automobile component. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

  • PDF

Casting of Ductile Cast Iron using Metal Mold and Improvement of Impact Toughness by Direct Tempering (금형주조법에 의한 구상흑연주철의 제조 및 직접 템퍼링에 의한 충격인성 향상)

  • Choi, Sung Bae;Lee, Won Sik;Hong, Young Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.159-164
    • /
    • 1997
  • Non-alloyed and 1.0%Ni alloyed ductile cast iron were cast into the sand mold and metal mold, and finer graphite size was obtained in case of metal mold casting. Direct tempering after casting showed the slight increase of absorbed energy, which is largely due to the relieving of residual stress that is developed during casting. After austempering heat treatment, higher impact energy was obtained in case of metal mold casting than sand mold casting, which is due to the finer graphite size.

  • PDF

Combined Heat Treating characteristics of Hot Work Tool Steel (열간금형 공구강의 복합열처리 특성에 관한 연구)

  • Kim, Y.H.;Kim, D.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.315-323
    • /
    • 1998
  • This study has been conducted to develope the combined heat treating technique of gas carburising - gas nitriding and gas carburising to improve the hot working performance of type H3 hot work tool steel. Case depth and carbrides coarsening were increased with increasing carburising temperature and time, respectively. Surface hardness showed decreasing tendency with increasing 2nd tempering temperature after carburising treatment. After carburising, 2nd treatment at 500 to 600 was chosen according to a hardness demand of final product. High temperature tempering resistance showed more excellent quality during such carburising-nitriding or carburising than complex treatment as after conventional hardening.

  • PDF