• Title/Summary/Keyword: Tempered Martensite

Search Result 69, Processing Time 0.025 seconds

Effects of Alloying Elements and Heat-Treatments on Abrasion Wear Behavior of High Alloyed White Cast Iron

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.104-109
    • /
    • 2000
  • Three different white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their abrasion wear behavior in as-cast and heat-treated conditions. The specimens were produced using a 15㎏-capacity high frequency induction furnace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into Y-block pepset molds. Three combinations of the alloying elements were selected so as to obtain the different types of carbides : 3%C-10%Cr-5%Mo-5%W(alloy No. 1: $M_7C_3$ and $M_6C$), 3%C -10%V-5%Mo-5%W(alloy No. 2: MC and $M_2C$) and 3%C-17%Cr-3%V(alloy No. 3: $M_7C_3$ only). A scratching type abrasion test was carried out in the states of as-cast(AS), homogenizing(AH), air-hardening(AHF) and tempering(AHFT). First of all, the as-cast specimens were homogenized at $950^{\circ}C$ for 5h under the vacuum atmosphere. Then, they were austenitized at $1050^{\circ}C$ for 2h and followed by air-hardening in air. The air-hardened specimens were tempered at $300^{\circ}C$ for 3h. 1 ㎏ load was applied in order to contact the specimen with abrading wheel which was wound by 120 mesh SiC paper. The wear loss of the test piece(dimension: $50{\times}50{\times}5$ mm) was measured after one cycle of wear test and this procedure was repeated up to 8 cycles. In all the specimens, the abrasion wear loss was found to decrease in the order of AH, AS, AHFT and AHF states. Abrasion wear loss was lowest in the alloy No.2 and highest in the alloy No.1 except for the as-cast and homogenized condition in which the alloy No.3 showed the highest abrasion wear loss. The lowest abrasion wear loss of the alloy No.2 could be attributed to the fact that it contained primary and eutectic MC carbides, and eutectic $M_2C$ carbide with extremely high hardness. The matrix of each specimen was fully pearlitic in the as-cast state but it was transformed to martensite, tempered martensite and austenite depending upon the type of heat-treatment. From these results, it becomes clear that MC carbide is a significant phase to improve the abrasion wear resistance.

  • PDF

Microstructures and Mechanical Properties of Reduced-activation Ferritic/Martensitic (RAFM) Steels with Ti Substituted for Ta (Ta 첨가원소 대체 Ti 첨가형 저방사화 페라이트/마르텐사이트 강의 미세조직과 기계적 특성)

  • Seol, Woo-Kyoung;Lee, Chang-Hoon;Moon, Joonoh;Lee, Tae-Ho;Jang, Jae Hoon;Kang, Namhyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.2
    • /
    • pp.53-60
    • /
    • 2017
  • The aim of this study is to examine a feasibility to substitute Ti for Ta in reduced activation ferritic/martensitic (RAFM) steel by comparing a Ti-added RAFM steel with a conventional Ta-added RAFM steel. The microstructures and mechanical properties of Ta-, and Ti-added RAFM steels were investigated and a relationship between microstructures and mechanical properties was considered based on quantitative analysis of precipitates in two RAFM steels. Ta-, and Ti-added RAFM steels were normalized at $1000{\sim}1040^{\circ}C$ for 30 min and tempered at $750^{\circ}C$ for 2 hr. Both RAFM steels had very similar microstructures, that is, typical tempered martensite with relatively coarse $M_{23}C_6$ carbides at boundaries of grain and lath, and fine MX precipitates inside laths. The MX precipitates were identified as TaC in Ta-added RAFM steel and TiC or (Ti, W)C in Ti-added RAFM steel, respectively. It is believed that these RAFM steels show similar tensile and Charpy impact properties due to similar microstructures. Precipitate hardening and brittle fracture strength calculated with quantitative analysis of precipitates elucidated well the similar behaviors on the tensile and Charpy impact properties of Ta-, and Ti-added RAFM steels.

Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (ll) - Boiler Header - (Sp-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(ll) - 보일러 헤더 -)

  • Baek, Seung-Se;Lee, Dong-Hwan;Ha, Jeong-Su;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • For the development of a new creep test technique, the availability of SP-Creep test is discussed for 1Cr-0.5Mo boiler header material. And some results are also compared with those of 2.25Cr- 1Mo steel which widely uses as boiler superheater tube. The results can be summarized as follows. The load exponents(n) obtained by SP-Creep test for 1Cr-0.5Mo steel are decreased with increasing creep temperature and the values are 15.67, 13.89, and 17.13 at 550$^{circ}C$ ,575$^{circ}C$ and 600$^{circ}C$, respectively. The temperature dependence of the load exponent is given by n = 107.19 - 0.1108T. This reason that load exponents show the extensive range of 10∼16 is attributed to the fine carbide such as M$_{23}$C$_{6}$ in lath tempered martensitic structures. At the same creep condition, the secondary creep rate of 1Cr-0.5Mo steel is lower than the 2.25Cr-1Mo steel1 due to the strengthening microstructure composed by normalizing and tempering treatments. Through a SEM observation, it can be summarized that the primary, secondary, and tertiary creep regions of SP-Creep specimen are corresponding to plastic bending, plastic membrane stretching, and plastic instability regions among the deformation behavior of four steps in SP test, respectively.y.

A Study on Correlation of Microstructural Degradation and Mechanical Properties of 9-12%Cr-Steel for Ultra-Super Critical Power Generation (초초임계압 발전용 소재의 장시간 열처리에 따른 미세조직 변화와 기계적 특성의 상관관계 연구)

  • Joo Sungwook;Yoo Junghoon;Shin Keesam;Hur Sung Kang;Lee Je-Hyun;Suk Jin Ik;Kim Jeong Tae;Kim Byung Hoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • For the good combination of high-temperature strength, toughness and creep property, $9-12\%$ chromium steels are often used for gas turbine compressors, steam turbine rotors, blade and casing. In this study, the correlation of microstructural evolution and mechanical properties was investigated fur the specimens heat-treated at 600, 650 and $700^{\circ}C$ for 1000, 3000 and 5000 hrs. The microstructure of as-received specimen was tempered martensite with a high dislocation density, small sub-grains and fine secondary phase such as $M_23C_6$. Aging for long-time at high temperature caused the growth of martensite lath and the decrease of dislocation density resulting in the decrease in strength. However, the evolution of secondary phases had influence on hardness, yield strength and impact property. In the group A specimen aged at $600^{\circ}C\;and\;650^{\circ}C$, Laves phase was observed. The Laves phase caused the increase of the hardness and the decrease of the impact property. In addition, the abrupt growth of secondary phases caused decrease of the impact property in both A and B group specimens.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

Through Thickness Microstructure and Mechanical Properties in a Forged Thick Section Mod. 9Cr-1Mo Steel (고온 원자로용 Mod. 9Cr-1Mo강 후판재의 깊이에 따른 미세조직 및 기계적 특성 변화)

  • Lee, Sun-Hee;Park, Sang-Gyu;Kim, Min-Chul;Lee, Bong-Sang;Kim, Sun-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.42-47
    • /
    • 2011
  • The purpose of this study is to investigate the effects of through thickness on the mechanical properties and microstructural features in Mod. 9Cr-1Mo steels for RPVs. The microstructures at all locations were typically tempered martensite, but small amount of delta ferrite was observed at the center region. The prior austenite grain size increased with the depth from the surface. The yield strengths of center and 1/4T location were higher than that of surface by 30MPa. The impact toughness of center was low compared to those of other specimens. Also, upper shelf energy was low at the center. The toughness deterioration in center might be caused by larger size of the prior austenite grains and existence of the delta ferrite.

Effect of Hardness and Substructure on Long-term Creep Behavior of Mod.9Cr-1Mo Steel (개량 9Cr-1Mo 강의 장시간 크리프거동에 미치는 경도와 하부조직의 영향)

  • 박규섭;이근진;정한식;김정호;정영관;엔도타카오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.168-176
    • /
    • 2004
  • Interrupted creep tests were carried out on the Mod.9Cr-1Mo steel in order to investigate the structural degradation during creep. The ranges of creep stress and temperature were from 71 to 167MPa and 873 to 923k, respectively. The change of hardness and tempered martensitic lath width were measured in the grip and gauge parts of interrupted specimens. The lath structure was thermally stable in static conditions, but was not stable during creep, and the structural evolution was enhanced by creep strain. The relation between the change in lath width and strain was described in the from, $\delta$W= a ($W_s-W_o$)$cdot;varepsilon$, where $\varepsilon$ is the strain, $W_o$is the initial lath width, $W_s$ is the final lath width depending solely on stress, and a is the constant of the magnitude of 0.67 $\mu$m /strain. The change in Victors hardness was expressed by a one-valued function of creep life consumption ratio. Based on the empirical relation between strain and lath width, a model was proposed to explain the relation between change in hardness and creep life consumption ratio. The model revealed that about 65$%$ of dislocations in lath structures were eliminated by the migration of subboundaries.

Development of Roll Shell for Aluminium Continuous Casters of High Strength and High Toughness (고강도${\cdot}$고인성의 알루미늄 연속 주조기용 롤쉘 개발)

  • Kim B. H.;Park Y. C.;Kim J. T.;Lee W. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.216-222
    • /
    • 2004
  • The caster roll shells have the good thermal conductivity and the low thermal expansion and have to exhibit high enough strength and good ductility at temperature up to $600^{\circ}C$. Thermal stress in particular is very high due to the contact with the liquid aluminium. The main stresses are of thermal origin, which bring a plastic fatigue on surface. This paper will represent one survey about the investigation of the failure of roll shells for continuous casters and an analysis using the simulation of the temperature distribution and the state of stress during hot rolling. Moreover, there will be a discussion on the roll shell of Mod. HAR 5 which is developed by heat treatment process. Mod. HAR 5 has advantages of high strength, high toughness and increased thermal stress resistance while maintaining the same productivity as the conventional roll.

  • PDF

Microstructure, Hardness and Tensile Properties of 600 MPa-Grade High-Strength and Seismic Resistant Reinforcing Steels (600 MPa급 고강도 일반 및 내진 철근의 미세조직, 경도와 인장 특성)

  • Seo, Ha-Neul;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.477-483
    • /
    • 2017
  • This present study deals with the microstructure and tensile properties of 600 MPa-grade high strength and seismic resistant reinforcing steels. The high strength reinforcing steel (SD 600) was fabricated by Tempcore processing, while the seismic resistant reinforcing steel (SD 600S) was air-cooled after hot-rolling treatment. The microstructure analysis results showed that the SD 600 steel specimen consisted of a tempered martensite and ferrite-pearlite structure after Tempcore processing, while the SD 600S steel specimen had a fully ferrite-pearlite structure. The room-temperature tensile test results indicate that, because of the enhanced solid solution and precipitation strengthening caused by relatively higher contents of C, Mn, Si and V in the SD 600S steel specimen, this specimen, with fully ferrite-pearlite structure, had yield and tensile strengths higher than those of the SD 600 specimen. On the other hand, the hardness of the SD 600 and SD 600S steel specimens changed in different ways according to location, dependent on the microstructure, ferrite grain size, and volume fraction.

Characteristics of Carburized Surface Layers in 0.18C-3.5Ni-1.5Cr-0.2Mo Steels for Main Shaft Bearings of Wind Turbines (풍력발전시스템의 주 베어링용 0.18C-3.5Ni-1.5Cr-0.2Mo강의 침탄 표면특성)

  • Choi, Byung-Young;Gub, Yoon-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.226-231
    • /
    • 2012
  • Characteristics of carburized surface layers in 0.18C-3.5Ni-1.5Cr-0.2Mo steels for main shaft bearings of wind turbines have been analyzed and evaluated before and after rolling contact fatigue tests. Mixed microstructure consisting of retained austenite and tempered martensite has been formed with compressive residual stresses in the surface hardened layers of the specimens showing uniform hardness distribution with value about Hv700 after vacuum carburizing and tempering. It has been found on the raceway of the layers of the specimens after rolling contact fatigue tests that the amount of retained austenite decreased and compressive residual stresses increased, resulting from cyclic contact stresses applied during the tests. It has been also revealed that higher durability of the bearings can be obtained through controlling the amount of the retained austenite in the surface of the bearing steels to be lower in this study.