• Title/Summary/Keyword: Temperature-sensitive hydrogel

Search Result 18, Processing Time 0.026 seconds

Release of Calcein from Temperature-Sensitive Liposomes in a Poly(N-isopropylacrylamide) Hydrogel

  • Han Hee Dong;Kim Tae Woo;Shin Byung Cheol;Choi Ho Suk
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • We prepared temperature-sensitive liposomes (TS-liposomes) modified with a thermo sensitive polymer, such as poly(N-isopropylacrylamide) (PNIPAAm), to increase the degree of drug release from liposomes at the hyperthermic temperature. A PNIPAAm hydrogel containing TS-Iiposomes was also prepared to obtain a hydrogel complex at body temperature. In addition, a depot system for local drug delivery using the polymer hydrogel was developed to enhance therapeutic efficacy and prevent severe side effects in the whole body. The PNIPAAm-mod­ified TS-liposome was fixed into the PNIPAAm hydrogel having a high temperature-sensitivity. The release behavior of calcein, a model drug, from TS-liposomes in the PNIPAAm hydrogel was then initiated by external hyperthermia; the results indicated that sustained release as a function of temperature and time was caused by the thermosensitivity of the liposome surface and diffusion of the drug into the PNIPAAm hydrogel. Our results indicated that TS-liposomes in a PNIPAAm hydrogel represented a plausible system for local drug delivery.

Controlled Release Behavior of Temperature Responsive Composite Hydrogel Containing Activated Carbon

  • Yun, Ju-Mi;Im, Ji-Sun;Jin, Dong-Hwee;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.283-288
    • /
    • 2008
  • The composites of temperature-sensitive hydrogel and activated carbons were prepared in order to improve both the mechanical strength of hydrogel matrix and the loading capacity of drug in a hydrogel drug delivery system. The swelling of composite hydrogel was varied depending on the temperature. Both the swelling and the release behavior of the composite hydrogel were varied depending on the kind of activated carbon. The release behavior showed the high efficiency which is important for practical applications.

Origami inspired Temperature Sensor based on Stimuli-Responsive Hydrogel (종이접기 기반 자극 반응성 하이드젤 온도 센서 연구)

  • Na, Jun-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.35-38
    • /
    • 2017
  • A thermally responsive hydrogel has reversibility with temperature during swelling. Here, we proposed origami inspired temperature sensor by using multi-layered hydrogel film. The formation of patterned stripes on microscale film drives bending to an angle that can be controlled linearly. Although temperature range was not wide, measured sensitivity of sensors has high resolution and accuracy. It providing a powerful platform for the design of sensitive sensors and that easily adapt other type of sensors in microscale.

Characterization of a pH/Temperature-Sensitive Hydrogel Synthesized at Different pH and Temperature Conditions (pH/온도-동시 민감성 Hydrogel의 합성조건에 따른 특성 연구)

  • 유형덕;정인식;박창호
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.548-555
    • /
    • 2000
  • A hydrogel, poly(N-isopropylacrylamide-co-N, N-dimethylaminopropylmethacrylamide), sensitive to both pH and temperature, was synthesized and characterized at $^13∼23{\circ}C$ and pH of 10.3∼12.3. The gel was more transparent and mechanically stronger at lower preparation temperature and pH. Large pores observed in scanning electron microscope seem to be responsible for the lower biomolecular separation efficiency. The lower critical solution temperature (LCST) decreased at a higher polymerization temperature. At $25^{\circ}C$, which is lower than the LCST, the gel was swollen regardless of the solution pH. At $40^{\circ}C$, however, the gel was swollen at neutral and acidic pHs even though the temperature was higher than the LCST. The gel collapse pH, defined as the point at which the gel made its largest volume decrease per unit pH increment, increased as the gel preparation temperature increased.

  • PDF

Swelling Characteristics of a Hydrogel poly(N-isopropylacrylamide-co-N N'-dimethylaminopropyl methacrylamide) Sensitive to Both pH and Temperature (pH 및 온도에 동시에 민감한 하이드로젤의 팽윤 특성)

  • 손창규;정인식;박창호
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 1999
  • A hydrogel, poly(N-isopropylacrylamide-co-N,N'-dimethylaminopropyl methacrylamide), sensitive to both pH and temperature was synthesized and characterized for its welling behavior, lower critical solution temperature (LCST), and its appearance. The hydrogel with 5 mol% of N,N'-diemthylaminopropyl methacrylamide (DMAPMAAm) increased its volume phenomenonally in a lower pH range (ph 1~8) even at temperature ($37^{\circ}C$ and $40^{\circ}C$) higher than LCST. This behavior was unique compared to the temperature -sensitive hydrogel which did not exhibit any swelling in the same pH range. The hydrogel with 20 mol% of DMAPMAAm was swollen significantly at a higher pH of 12. With pH decrease from 12 to 2 water content in the gel increased from 38.8 wt% and 60.6 wt%, and 90.8 wt% for 5 mol% and 20 mol% gel, respectively. The transition pH that pH effect overwhelmed temperature effect occurred at a lower pH for a higher temperature ($40^{\circ}C$) and a lower mol% (5 mol%) of DMAPMAAm. Transparency and LCST of the gel increased with higher DMAPMAAm mol%.

  • PDF

Light intensity controlled wrinkling patterns in photo-thermal sensitive hydrogels

  • Toh, William;Ding, Zhiwei;Ng, Teng Yong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.315-327
    • /
    • 2016
  • Undergoing large volumetric changes upon incremental environmental stimulation, hydrogels are interesting materials which hold immense potentials for utilization in a wide array of applications in diverse industries. Owing to the large magnitudes of deformation it undergoes, swelling induced instability is a commonly observed sight in all types of gels. In this work, we investigate the instability of photo-thermal sensitive hydrogels, produced by impregnating light absorbing nano-particles into the polymer network of a temperature sensitive hydrogel, such as PNIPAM. Earlier works have shown that by using lights of different intensities, these hydrogels follow different swelling trends. We investigate the possibility of utilizing this fact for remote switching applications. The analysis is built on a thermodynamic framework of inhomogeneous large deformation of hydrogels and implemented via commercial finite element software, ABAQUS. Various examples of swelling induced instabilities, and its corresponding dependence on light intensity, will be investigated. We show that the instabilities that arise have their morphologies dependent on the light intensity.

Preparation and Performance Evaluation of a Zinc Oxide-Graphene Oxideloaded Chitosan-Based Thermosensitive Gel

  • Hao Huang;Rui Han;Ping-Ping Huang;Chuan-Yue Qiao;Shuang Bian;Han Xiao;Lei Ma
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1229-1238
    • /
    • 2024
  • This study aimed to develop and assess a chitosan biomedical antibacterial gel ZincOxide-GrapheneOxide/Chitosan/β-Glycerophosphate (ZnO-GO/CS/β-GP) loaded with nano-zinc oxide (ZnO) and graphene oxide (GO), known for its potent antibacterial properties, biocompatibility, and sustained drug release. ZnO nanoparticles (ZnO-NPs) were modified and integrated with GO sheets to create 1% and 3% ZnO-GO/CS/β-GP thermo-sensitive hydrogels based on ZnO-GO to Chitosan (CS) mass ratio. Gelation time, pH, structural changes, and microscopic morphology were evaluated. The hydrogel's antibacterial efficacy against Porphyromonas gingivalis, biofilm biomass, and metabolic activity was examined alongside its impact (MC3T3-e1). The findings of this study revealed that both hydrogel formulations exhibited temperature sensitivity, maintaining a neutral pH. The ZnO-GO/CS/β-GP formulation effectively inhibited P. gingivalis bacterial activity and biofilm formation, with a 3% ZnO-GO/CS/β-GP antibacterial rate approaching 100%. MC3T3-e1 cells displayed good biocompatibility when cultured in the hydrogel extract.The ZnO-GO/CS/β-GP thermo-sensitive hydrogel demonstrates favorable physical and chemical properties, effectively preventing P. gingivalis biofilm formation. It exhibits promising biocompatibility, suggesting its potential as an adjuvant therapy for managing and preventing peri-implantitis, subject to further clinical investigations.

pH- and Temperature-Sensitive Bifunctional Hydrogels of N-Isopropylacrylamide and Sulfadimethoxine Monomer

  • Lee, Jin-Woo;Lee, Doo-Sung;Kim, Sung-Wan
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2003
  • pH- and temperature-sensitive bifunctional hydrogels composed of N-isopropylacrylamide (NiPAAm) and a sulfadimethoxine monomer (SDM) derived from sulfadimethoxine were prepared. These hydrogels exhibit simultaneous pH- and temperature-induced volume-phase transitions. The pH-induced volume-phase transition behavior is produced by the ionization/deionization of SDM and is very sharp. In the high pH region, the ionization of SDM induces swelling of the hydrogels. In the low pH region, the deionization of SDM induces deswelling of the hydrogels. The temperature-induced volume-phase transition behavior of the bifunctional hydrogels exhibits negative thermosensitivity because of the NiPAAm component. The hydrogels swell even at low pH as the temperature decreases. The hydrogels swell at low temperature and high pH, and deswell at high temperature and low pH. The volume of the hydrogels dependl on the balance of the swelling and deswelling produced by the two competing stimuli, pH and temperature.

Temperature-Sensitive Polymers Adhered on FO Membrane as Drawing Agents (자극감응성 유도용질로서 정삼투막에 부착된 온도감응성 고분자)

  • Lee, Chong-Cheon;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.626-631
    • /
    • 2014
  • Water purification requires a large amount of energy that can cause pollution problems. For this reason, forward osmosis (FO) has attracted intense interest that required a relatively low amount of energy for water purification. The forward osmosis has a serious problem that it needs drawing agents creating osmotic pressure to extract water from contaminated water. In this study, a copolymer of zwitterionic moiety and an interpenetrating polymer network (IPN) hydrogel based on thermo-responsive polymer hydrogel, poly(N-isopropylacrylamide) (PNIPAM) were prepared and attached on FO membranes, which successfully played the role of drawing agents. In the copolymer hydrogel, its swelling ratio was improved, but thermo-sensitivity was decreased. The swelling ratio and thermo-sensitivity of IPN hydrogel was lowered. We could confirm that swelling ratio is related to osmotic pressure.

Evaluation of skin improvement effect and feeling of use by a hydrogel face mask pack (하이드로겔 팩을 이용한 피부개선 효과 및 사용감 평가)

  • Kwon, Hye-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1773-1778
    • /
    • 2020
  • This study evaluated the skin improvement effect and feeling of use of a temperaturesensitive hydrogel mask pack containing an hyaluronic acid. Ten women in their 30s to 40s who met the selection criteria were tested. The hydrogel mask pack was applied 3 times a week for 4 weeks, and moisture, oil, and skin tone were measured. As a result, skin moisture content increased by 11.3% after one application and 58.36% after 4 weeks of use, showing a very high rate of moisture increase. The oil content increased by 67% after one use, and after that, an appropriate amount of oil was maintained. Did not increase any more. Skin tone increased after 4 weeks. After 4 weeks, evaluation of application feeling and sensory efficacy obtained 87.6% of positive results. As a result of the above, the temperature-sensitive hydrogel mask pack helps to improve the skin and has an excellent feeling of use.