• 제목/요약/키워드: Temperature variation range

검색결과 856건 처리시간 0.032초

동계 시각별 외기온의 변동 특성에 관한 연구 (Variation Characteristics of Hourly Atmospheric Temperature Throughout a Winter)

  • 이승언;손장열
    • 태양에너지
    • /
    • 제12권2호
    • /
    • pp.1-8
    • /
    • 1992
  • 본 연구는 동계 외기온 데이타의 시각별 변동특성을 파악하기 위하여 연변동 성분 및 기간변동 성분을 제거한 일변동 성분의 매 시각별 외기온 데이타에 대해서 일교차의 발생요인에 대해서 분석하였다. 또한 동계시각별 외기온의 주파수 특성에 대해서 검토하였으며 외기온 데이타의 수식화의 가능성을 제시하였다.

  • PDF

應答係數法에 의한 溫水 溫室 暖房 시스템의 Simulation (Simulation of the hot water ONDOL heating system by response factor method)

  • 조상준;민만기;최영돈
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.409-424
    • /
    • 1987
  • 본 연구에서는 유한차분법보다는 정확도가 약간 떨어지지만 공기조화 분야의 계산에 적합하고 계산시간이 적게 소요되는 응답계수법을 사용하여 온수온돌방계의 비 정상 열전달을 해석하였다.

CMOS 공정을 이용하는 동작온도에 무관한 펄스폭 변조회로 설계 (Design of Temperature Stable Pulse Width Modulation Circuit Using CMOS Process Technology)

  • 김도우;최진호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.186-187
    • /
    • 2007
  • In this work, a temperature stable PWM(Pulse width modulation) circuit is proposed. The designed PWM circuit has a temperature dependent current source and a temperature independent voltage to compensate electrical characteristics with operating temperature. The variation of driving current is from about 4% to -6% in the temperature range $0^{\circ}C\;to\;70^{\circ}C$ compared to the current at the room temperature. The variation of bandgap voltage reference is from about 1.3% to -0.2% with temperature when the supply voltage is 3.3 volts. From simulation results, the variation of output pulse width is less than from 0.86% to -0.38% in the temperature range $0^{\circ}C\;to\;70^{\circ}C$.

  • PDF

게인 스케줄링을 이용한 광대역 온도제어기의 설계 (Design of Temperature based Gain Scheduled Controller for Wide Temperature Variation)

  • 정재현;김정한
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.831-838
    • /
    • 2013
  • This paper focused on the design of an efficient temperature controller for a plant with a wide range of operating temperatures. The greater the temperature difference a plant has, the larger the nonlinearity it is exposed to in terms of heat transfer. For this reason, we divided the temperature range into five sections, and each was modeled using ARMAX(auto regressive moving average exogenous). The movement of the dominant poles of the sliced system was analyzed and, based on the variation in the system parameters with temperature, optimal control parameters were obtained through simulation and experiments. From the configurations for each section of the temperature range, a temperature-based gain-scheduled controller (TBGSC) was designed for parameter variation of the plant. Experiments showed that the TBGSC resulted in improved performance compared with an existing proportional integral derivative (PID) controller.

광섬유 접속부의 환경 변화에 따른 손실변화 연구 (A Study on the Variation of Optical Fiber Splicing Loss due to Environment)

  • 김영호;유강희
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2006년도 하계학술대회
    • /
    • pp.105-110
    • /
    • 2006
  • The most sensitive part of the installed optical cable is the optical loss variation of the splicing point according to the environmental changes. This paper presents the details of the experimental results of the external environmental changes on optical loss, such as bending, temperature variation, temperature variation after water osmosis and variation. Through the bending test of optical fiber, rapid increase of optical loss was measured within the diameter of 30mm. The result of optical loss variation within the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$ is less than 0.02dB. It was confirmed that the maximum optical loss increased up to 0.2dB in case of water osmosis within the temperature range of $-40^{\circ}C{\sim}80^{\circ}C$. There is small optical loss variation of 0.01dB under the 1mm vibration test. The experimental results of this paper can be used as the reference data for the design of the optical fiber cable splicing enclosure to protect the optical loss variation due to environmental changes.

  • PDF

Elimination of environmental temperature effect from the variation of stay cable force based on simple temperature measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Liu, Chun-Yan;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • 제19권2호
    • /
    • pp.137-149
    • /
    • 2017
  • Under the interference of the temperature effect, the alternation of cable force due to damages of a cable-stayed bridge could be difficult to distinguish. Considering the convenience and applicability in engineering practice, simple air or cable temperature measurements are adopted in the current study for the exclusion of temperature effect from the variation of cable force. Using the data collected from Ai-Lan Bridge located in central Taiwan, this work applies the ensemble empirical mode decomposition to process the time histories of cable force, air temperature, and cable temperature. It is evidently observed that the cable force and both types of temperature can all be categorized as the daily variation, long-term variation, and high-frequency noise in the order of decreasing weight. Moreover, the correlation analysis conducted for the decomposed variations of all these three quantities undoubtedly indicates that the daily and long-term variations with different time shifts have to be distinguished for accurately evaluating the temperature effect on the variation of cable force. Finally, consistent results in reducing the range of cable force variation after the elimination of temperature effect confirm the validity and stability of the developed method.

미세조직 및 첨가성분 (CoO와 $Al_2O_3$)이 Mn-Zn Ferrite의 자기적 성질에 미치는 영향 (The Effects of Microstructures and Some Additives (CoO and $Al_2O_3$) on the Magnetic Properties of Mn-Zn Ferrite)

  • 변수일;장승현
    • 한국세라믹학회지
    • /
    • 제16권3호
    • /
    • pp.142-154
    • /
    • 1979
  • The effects of microstructures and some additives $(CoO and Al_2O_3$) on the magnetic properties such as initial permeability, $\mu$-T curve, coercive force, and magnetic induction of MnZn ferrites have been studied. The powder was prepared by Hot Petroleum Drying Method. The basic composition of MnZn ferrites was 25.5mole % MnO, 22.0 mole% ZnO, 52.5 mole% $Fe_2O_3$. CoO in a concentration range from 0.05 to 0.5 mole% and $Al_2O_3$ from 2.5 to 7.5 mole% were added. Sintered density increased up to 97.5% of theoretical density. Permeability increased as average grain size increased, and that coercive force decreased as average grian size increased. Magnetic induction increased as sintered density increased. The variation of initial permeability with temperature in a temperature range from 0$^{\circ}$ to $60^{\circ}C$ was lowered (a flatter $\mu-T$ curve) as sintering temperature decreased. The compensation temperature To ofmagnetocrystalline anisotropy constant K1 and initial permeability varied with the species and amount of additives. When 0.05 mole% CoO was added to the basic composition, initial permeability at $15^{\circ}C$ increased from 5200 to 5900. The variation ofinitial permeability with temperature in a temperature range from 0^{\circ}to $60^{\circ}C$ was smaller (a flatter $\mu$-T curve) than that of the basic composition of Mn Zn ferrites. When 2.5 mole% $Al_2O_3$ was added, initial permeability at $15^{\circ}C$ decreased from 5200 to 3000. But the variation of initial permeability with temperature in a temperature range from 0$^{\circ}$to $60^{\circ}C$ was smaller (a flat ter $\mu-T$ curve) than when 0.05 mole% CoO was added. Experimental results showed that the conditions necessary for the occurrence of a very high permeability and a flat $\mu$-T curve were controversial even in a temperature range from $0^{\circ}$to $60^{\circ}C$.

  • PDF

A Low Voltage Bandgap Current Reference with Low Dependence on Process, Power Supply, and Temperature

  • Cheon, Jimin
    • 한국정보기술학회 영문논문지
    • /
    • 제8권2호
    • /
    • pp.59-67
    • /
    • 2018
  • The minimum power supply voltage of a typical bandgap current reference (BGCR) is limited by operating temperature and input common mode range (ICMR) of a feedback amplifier. A new BGCR using a bandgap voltage generator (BGVG) is proposed to minimize the effect of temperature, supply voltage, and process variation. The BGVG is designed with proportional to absolute temperature (PTAT) characteristic, and a feedback amplifier is designed with weak-inversion transistors for low voltage operation. It is verified with a $0.18-{\mu}m$ CMOS process with five corners for MOS transistors and three corners for BJTs. The proposed circuit is superior to other reported current references under temperature variation from $-40^{\circ}C$ to $120^{\circ}C$ and power supply variation from 1.2 V to 1.8 V. The total power consumption is $126{\mu}W$ under the conditions that the power supply voltage is 1.2 V, the output current is $10{\mu}A$, and the operating temperature is $20^{\circ}C$.

완도 양식장 해역의 수온변동 (Seawater Temperature Variation at Aquafarms off Wando in the Southwest Coast of Korea)

  • 양준용;이준수;한인성;최용규;서영상
    • 해양환경안전학회지
    • /
    • 제18권6호
    • /
    • pp.514-519
    • /
    • 2012
  • 전라남도 완도 연안 해역은 전복양식이 중요하고 최근 해상가두리 양식이 보편화되어 전복사육과 폐사에 중요한 수온의 변동을 이해할 필요가 있다. 완도해역에 위치한 신지도, 청산도의 2005년부터 2009년까지 연속자동관측 수온자료를 이용하여 완도 양식장 해역의 수온 변동 특성을 분석하였다. 연안에 가까운 신지도의 연간 수온변동 범위와 수온증가율이 청산도에 비해 크게 나타났으며, 수심이 낮은 연안 해역에서 하계 태양복사열에 의한 가열과 동계의 냉각에 기인한 것으로 판단된다. 또한 추계의 수온 감소율이 춘계의 상승률보다 컸고, 하계에 조석 주기의 단주기 수온변동이 뚜렷하게 나타났다. 급격한 수온변화에 해당하는 큰 수온일교차는 청산도에서 크게 나타났다. 수온 자료로 판단한 전복양식장은 외해에 위치한 청산도가 연안보다 더 적절한 해역으로 판단된다.

BiCMOS 기술을 이용한 전압-주파수 변환 회로 (Voltage-to Frequency Converter using BiCMOS)

  • 최진호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(2)
    • /
    • pp.193-196
    • /
    • 2000
  • In this work, I propose a temperature stable voltage-to-frequency converter in which the output frequency is directly proportional to the input voltage. The output frequency range is from 20㎑ to 60㎑ and the difference between simulated and calculated values is less than about 5% for this range of output frequency. The temperature variation of sample output frequencies is less than ${\pm}$0.5% in the temperature range -25$^{\circ}C$ to 75$^{\circ}C$.

  • PDF