• 제목/요약/키워드: Temperature transmission

검색결과 1,617건 처리시간 0.031초

무선 센서 네트워크를 위한 온도인지형 전송파워 제어 기법 (T2PC: Temperature-aware Transmission Power Control Scheme for Wireless Sensor Networks)

  • 이정욱;정광수
    • 한국정보과학회논문지:정보통신
    • /
    • 제37권5호
    • /
    • pp.403-408
    • /
    • 2010
  • 센서 노드는 사막, 도시, 데이터 센터등과 같이 온도의 변화가 심한 환경에 설치될 수 있다. 특히 온도가 증가하게 되면 설정한 파워에 비해 출력되는 파워가 감쇄되기 때문에 RSSI와 같은 링크 품질의 저하를 초래하며, 패킷 손실이 발생될 수 있다. 무선 환경에서 온도의 변화를 보상하기 위한 노드간에 링크 품질의 변화를 파악하고 일련의 피드백 과정을 통하여 전송파워 제어하는 기존의 방법이 있으나, 추가적인 제어 패킷들이 많이 발생하는 문제점이 있다. 본 논문에서는 이러한 온도 변화에 따른 링크품질의 유지를 위하여 T2PC(Temperature-aware Transmission Power Control)를 제안하였다. T2PC는 각 노드에서 자체적으로 얻을 수 있는 온도정보를 이용하여 전송파워를 제어함으로서 감쇄된 랭크 품질을 보상하도록 하였다. 또한 기존의 피드백을 이용한 전송파워 제어 기법보다 적은 컨트롤 패킷으로 패킷 수신율을 향상시켰다.

60GHz대역 무선통신장애 해결을 위한 온도보상장치 개발 (The Development of the Temperature Compensation Equipment to minimize Error in the Wireless Transmission System at 60GHz Band)

  • 명병수;구성득
    • 한국산업융합학회 논문집
    • /
    • 제8권2호
    • /
    • pp.97-104
    • /
    • 2005
  • Usually, propagation attenuation of millimeter wave occurs by rainfall, snowfall, temperature, effect of pressure of air. In 60GHz wave band wireless communication network, temperature change becomes big factor of propagation loss department. Also, temperature change causes disturbance of 60GHz frequency at transceiver. In this study, we used 60GHz transceiver and found propagation loss of wireless path and operating frequency disturbance characteristics. In transceiver that there is no temperature compensated device, operating frequency of TX changed by 60.865GHz at temperature of $-5^{\circ}C$, and appeared by 60.730GHz when is $50^{\circ}C$. Therefore, operating frequency change width by temperature change are about 100MHz, greatly. But, in transceiver that there is temperature compensated device, operating frequency of TX changed by 60.830GHz at temperature of $-5^{\circ}C$, and appeared by 60.710GHz when is $50^{\circ}C$. Therefore, operating frequency change width by temperature change are about 20MHz. According to these result, we constructed between buildings examination wireless site for point to point wireless communication using 60GHz band transceivers who have do temperature compensated device, and investigated data transmission characteristics about ambient temperature change. Therefore, if use transceiver that have temperature compensated device, may overcome the wireless transmission error in 60GHz band wireless communication LAN networks despite of ambient temperature change.

  • PDF

지중관로에서의 실제 허용전류 산출을 위한 도체온도 계산 알고리즘 개선에 관한 연구 (Improvement of the Conductor Temperature Calculation Algorithm for Calculating the Allowable Current in the Underground Channel)

  • 이향범;이병철;김정훈;남용현;강지원
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.352-357
    • /
    • 2018
  • In this paper, the improvement of the conductor temperature calculation algorithm is studied. The allowable current of the underground transmission line is determined by the conductor temperature limit. Usually to calculate the allowable current limit, the conductor temperature is assumed in the most worst environment condition. It is possible to increase the transmission capacity if the actual burial environment is considered. Therefore, in this paper an algorithm is proposed to calculate the conductor temperature by distinguishing two area of a underground transmission line condition - the manhole where the temperature sensor can be installed and the underground transmission line in which the temperature sensor can not be installed easily. When calculating the conductor temperature by the underground line in the pipeline, the existing standard describes each environment as a single soil heat resistance and one ambient temperature. In order to compensate this situation, thermal resistance model that can take into consideration the ground surface temperature and under ground temperature is proposed. It is shown that the accuracy of the proposed model is increased compared with the existing standard calculation result.

Study on Influences and Elimination of Test Temperature on PDC Characteristic Spectroscopy of Oil-Paper Insulation System

  • Liu, Xiao;Liao, Ruijin;Lv, Yandong;Liu, Jiefeng;Gao, Jun;Hao, Jian
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1107-1113
    • /
    • 2015
  • Test temperature is an important factor affecting the measurement results of dielectric response of field power transformers. In order to better apply the polarization and depolarization current (PDC) to the condition monitoring of oil-paper insulation system in power transformers, the influences and elimination method of test temperature on PDC characteristic spectroscopy (PDC-CS) were investigated. Firstly, the experimental winding sample was measured by PDC method at different test temperatures, then the PDC-CS was obtained from the measurement results and its changing rules were discussed, which show that the PDC-CS appears a horizontal mobility with the rise of temperature. Based on the rules, the “time temperature shift technique” was introduced to eliminate the influence of test temperature. It is shown that the PDC-CS at different test temperatures can be converted to the same reference temperature coincident with each other.

Junction Temperature Prediction of IGBT Power Module Based on BP Neural Network

  • Wu, Junke;Zhou, Luowei;Du, Xiong;Sun, Pengju
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.970-977
    • /
    • 2014
  • In this paper, the artificial neural network is used to predict the junction temperature of the IGBT power module, by measuring the temperature sensitive electrical parameters (TSEP) of the module. An experiment circuit is built to measure saturation voltage drop and collector current under different temperature. In order to solve the nonlinear problem of TSEP approach as a junction temperature evaluation method, a Back Propagation (BP) neural network prediction model is established by using the Matlab. With the advantages of non-contact, high sensitivity, and without package open, the proposed method is also potentially promising for on-line junction temperature measurement. The Matlab simulation results show that BP neural network gives a more accuracy results, compared with the method of polynomial fitting.

상아질을 통한 플라즈마 아크 광중합기의 온도 전달 (TEMPERATURE TRANSMISSION OF PAC UNIT THROUGH DENTIN)

  • 박호원;김지훈
    • 대한소아치과학회지
    • /
    • 제30권4호
    • /
    • pp.707-714
    • /
    • 2003
  • 플라즈마 아크 광중합기 (Plasma Arc Curing units)는 상대적으로 높은 광강도를 발생시켜 짧은 중합시간으로 복합레진이 충분한 중합강도에 도달할 수 있게 해준다. 시술시간의 단축이라는 점에서 소아치과에서는 최근에 플라즈마 아크 광중합기를 많이 사용하고 있으나, 플라즈마 아크 광중합기는 광조사 동안 많은 열을 발생시킬 수 있다. 본 연구에서는 2종류의 플라즈마 아크 광중합기(Flipo, Q-Lux plasma 100)를 이용하여 여러 두께의 상아질 시편과 중합된 복합레진 시편을 통해 전달되는 온도를 측정하고 비교하였다. 본 연구의 결과는 다음과 같다. 1. 플라즈마 아크 광중합기를 연속적으로 조사하였을 때, 중합기의 조사단에서 측정된 온도는 조사시간이 증가함에 따라 증가하였고, Q-lux에서 Flipo보다 더 큰 온도 증가를 보였다(p<.0.001). 2. 상아질 시편의 두께에 따른 온도 변화에서, 상아질 시편의 두께가 증가함에 따라 온도 증가량은 감소되었다(p<0.05). 3. 복합레진 시편의 두께에 따른 온도 변화에서, 복합레진 시편의 두께가 증가함에 따라 온도 증가량은 감소되었다(p<0.05).

  • PDF

A Study on the Hot Spot Temperature in 154kV Power Transformers

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Woo, Jung-Wook;Kwak, Joo-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.312-319
    • /
    • 2012
  • The life of a power transformer is dependent on the life of the cellulose paper, which influenced by the hot spot temperature. Thus, the determination of the cellulose paper's life requires identifying the hot spot temperature of the transformer. Currently, however, the power transformer uses a heat run test is used in the factory test to measure top liquid temperature rise and average winding temperature rise, which is specified in its specification. The hot spot temperature is calculated by the winding resistance detected during the heat run test. This paper measures the hot spot temperature in the single-phase, 154kV, 15/20MVA power transformer by the optical fiber sensors and compares the value with the hot spot temperature calculated by the conventional heat run test in the factory test. To measure the hot spot temperature, ten optical fiber sensors were installed on both the high and low voltage winding; and the temperature distribution during the heat run test, three thermocouples were installed. The hot spot temperature shown in the heat run test was $92.6^{\circ}C$ on the low voltage winding. However, the hot spot temperature as measured by the optical fiber sensor appeared between turn 2 and turn 3 on the upper side of the low voltage winding, recording $105.9^{\circ}C$. The hot spot temperature of the low voltage winding as measured by the optical fiber sensor was $13.3^{\circ}C$ higher than the hot spot temperature calculated by the heat run test. Therefore, the hot spot factor (H) in IEC 60076-2 appeared to be 2.0.

Temperature effect on seismic behavior of transmission tower-line system equipped with SMA-TMD

  • Tian, Li;Liu, Juncai;Qiu, Canxing;Rong, Kunjie
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.1-14
    • /
    • 2019
  • Transmission tower-line system is one of most critical lifeline systems to cities. However, it is found that the transmission tower-line system is prone to be damaged by earthquakes in past decades. To mitigate seismic demands, this study introduces a tuned-mass damper (TMD) using superelastic shape memory alloy (SMA) spring for the system. In addition, considering the dynamic characteristics of both tower-line system and SMA are affected by temperature change. Particular attention is paid on the effect of temperature variation on seismic behavior. In doing so, the SMA-TMD is installed into the system, and its properties are optimized through parametric analyses. The considered temperature range is from -40 to $40^{\circ}C$. The seismic control effect of using SMA-TMD is investigated under the considered temperatures. Interested seismic performance indices include peak displacement and peak acceleration at the tower top and the height-wise deformation. Parametric analyses on seismic intensity and frequency ratio were carried out as well. This study indicates that the nonlinear behavior of SMA-TMD is critical to the control effect, and proper tuning before application is advisable. Seismic demand mitigation is always achieved in this wide temperature range, and the control effect is increased at high temperatures.

한국전력 노후 가공송전선의 동적송전용량에 대한 재평가 (A Reassessment for Dynamic Line Rating of Aged Overhead Transmission Lines in Kepco's Network)

  • 김성덕
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.123-129
    • /
    • 2010
  • During the past 2 decades, many electric power companies have been searching various solutions in order to supply power with economical and more efficiency in the present transmission utilities. Most interesting method to increase the line capacity of overhead transmission lines without constructing any new line might be to adapt Dynamic Line Rating(DLR). Specified rating is normally determined by any current level, not by conductor temperature. Although specified rating is essential to design transmission line, dip may be the most important factor in limiting transmission capacity. Transmission lines built by the oldest dip criterion among the 3 different design criteria for conductor dip are nearly over one-half of all Kepco's transmission lines. This paper describes an up-rating method for those transmission lines in order to apply DLR technique. Based on limit dip conductor temperature and current of the transmission lines, limitation performance and effectiveness in applying DLR with weather model are analyzed. As a result of analysis, it can be shown that an improved method could be effectively used for increasing the line rating of old transmission line which was built by the design criterion with low dip margin.

Development of High-Temperature Solders: Contribution of Transmission Electron Microscopy

  • Bae, Jee-Hwan;Shin, Keesam;Lee, Joon-Hwan;Kim, Mi-Yang;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • 제45권2호
    • /
    • pp.89-94
    • /
    • 2015
  • This article briefly reviews the results of recently reported research on high-temperature Pb-free solder alloys and the research trend for characterization of the interfacial reaction layer. To improve the product reliability of high-temperature Pb-free solder alloys, thorough research is necessary not only to enhance the alloy properties but also to characterize and understand the interfacial reaction occurring during and after the bonding process. Transmission electron microscopy analysis is expected to play an important role in the development of high-temperature solders by providing accurate and reliable data with a high spatial resolution and facilitating understanding of the interfacial reaction at the solder joint.