T2PC: Temperature-aware Transmission Power Control Scheme for Wireless Sensor Networks

무선 센서 네트워크를 위한 온도인지형 전송파워 제어 기법

  • 이정욱 (광운대학교 전자통신공학과) ;
  • 정광수 (광운대학교 전자통신공학과)
  • Received : 2010.03.18
  • Accepted : 2010.07.25
  • Published : 2010.10.15

Abstract

The sensor nodes can be installed in the environment in which the temperature change is considerable, such as desert, urban, and data center. Particularly, because the output power becomes less than the targeted power if a temperature is increasing, link quality is degraded and packet losses are occurred. In order to compensate the temperature changes, existing schemes detect the change of the link quality between nodes and control transmission power through a series of feedback process. However, these approaches can cause heavy overhead by additional control packets. In this paper, we propose the T2PC(Temperature-aware Transmission Power Control) to keep up the link quality despite temperature variation. At each node, T2PC compensates the attenuated link quality by controlling the transmission power based on the local temperature measurement. In addition, the packet reception ratio can be improved with less control packets than ones required in existing transmission power control methods based on the feedback control.

센서 노드는 사막, 도시, 데이터 센터등과 같이 온도의 변화가 심한 환경에 설치될 수 있다. 특히 온도가 증가하게 되면 설정한 파워에 비해 출력되는 파워가 감쇄되기 때문에 RSSI와 같은 링크 품질의 저하를 초래하며, 패킷 손실이 발생될 수 있다. 무선 환경에서 온도의 변화를 보상하기 위한 노드간에 링크 품질의 변화를 파악하고 일련의 피드백 과정을 통하여 전송파워 제어하는 기존의 방법이 있으나, 추가적인 제어 패킷들이 많이 발생하는 문제점이 있다. 본 논문에서는 이러한 온도 변화에 따른 링크품질의 유지를 위하여 T2PC(Temperature-aware Transmission Power Control)를 제안하였다. T2PC는 각 노드에서 자체적으로 얻을 수 있는 온도정보를 이용하여 전송파워를 제어함으로서 감쇄된 랭크 품질을 보상하도록 하였다. 또한 기존의 피드백을 이용한 전송파워 제어 기법보다 적은 컨트롤 패킷으로 패킷 수신율을 향상시켰다.

Keywords

References

  1. K. Bannister, G. Giorgetti, and S. Gupta, "Wireless Sensor Networking for "Hot" Applications: Effects of Temperature on Signal Strength, Data Collection and Localization," In Proceedings of ACM the Fifth Workshop on Embedded Networked Sensors, June 2008.
  2. M. Kubisch, H. Karl, A. Wolisz, L. C. Zhong, and J. Rabaey, "Distributed Algorithms for Transmission Power Control in Wireless Sensor Networks," In Proceedings of IEEE Wireless Communications and Networking Conference, March 2003.
  3. K. Srinivasan and P. Levis, "RSSI is Under Appreciated," In Proceedings of ACM The Third Workshop on Embedded Networked Sensors, May 2006.
  4. S. Lin, J. Zhang, G. Zhou, L. Gu, J. A. Stankovic, and T. He, "ATPC: Adaptive Transmission Power Control for Wireless Sensor Networks," In Proceedings of ACM Conference on Embedded Networked Sensor Systems, 2006.
  5. K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, "An Empirical Study of Low Power Wireless," ACM Transactions on Sensor Networks, 2010.
  6. A. Woo, T. Tong, and D. Culler, "Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks," In Proceedings of ACM Conference on Embedded Networked Sensor Systems, November 2003.
  7. R. Ramanathan and R. Rosales-Hain, "Topology Control of Multihop Wireless Networks Using Transmit Power Adjustment," In Proceedings of IEEE Computer and Communications, 2000.
  8. J. Jeong, D. Cullar and J.H. Oh, "Empirical Analysis of Transmission Power Control Algorithms for Wireless Sensor Networks," Technical Report No. UCB/EECS-2005-16, University of California at Berkeley, November 2005.
  9. D. Son, B. Krishnamachari and J. Heidemann, "Experimental Study of the Effects of Transmission Power Control and Blacklisting in Wireless Sensor Networks," In Proceeding of IEEE Sensor and Ad Hoc Communications and Networks, October 2004.
  10. CC2520, 2.4 GHz IEEE 802.15.4 / Zigbee RF Transceiver, http://ti.com.